Skip to main content

Systems Pharmacology of Tyrosine Kinase Inhibitor-Associated Toxicities

  • Chapter
  • First Online:
Systems Pharmacology and Pharmacodynamics

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 23))

  • 2502 Accesses

Abstract

Tyrosine kinase inhibitors (TKIs) are designed to exhibit marked efficacy against cancer progression, based on accumulated molecular knowledge. The administration of TKIs is associated with much lower general toxicities (such as pancytopenia and gastrointestinal tract disturbance) than the administration of classical cytotoxic anti-tumor agents. However, TKIs provoke certain adverse reactions, which cannot be explained by the molecular mechanisms known at the time of drug development. Unfortunately, these unfavorable events often force the discontinuation of TKI treatment, with a typical worsening of therapeutic outcomes. Therefore, elucidating the molecular mechanisms behind TKI-related adverse reactions is a critical task in current and future chemotherapeutic drug management. Here, we provide a concrete mechanistic investigation of the adverse reactions of erlotinib, a TKI prototype, using a systems pharmacology-based approach. The molecular mechanism of erlotinib remains largely unknown, probably because there has been no unbiased drug analysis or account taken of the information available in numerous archives. In this study, we separated the mechanism of skin inflammation, a prominent erlotinib-mediated adverse reaction, into multiple pharmacokinetic/pharmacodynamic layers constituting drug responses. Importantly, an examination of the candidate mechanisms associated with each layer effectively extracted mechanisms from a myriad of contenders, enabling the design of polished “wet” experiments for further confirmation. This strategy is conceptually applicable to drugs other than erlotinib, and might facilitate the mechanistic exploration of the adverse reactions of cancer drugs in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Asab MS, Chaouchi M, Alesci S, Galli S, Laassri M, Cheema AK, Atouf F, VanMeter J, Amri H (2011) Biomarkers in the age of omics: time for a systems biology approach. OMICS 15(3):105–112. doi:10.1089/omi.2010.0023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354(19):2006–2013. doi:10.1056/NEJMoa051140

    Article  CAS  PubMed  Google Scholar 

  • Busam KJ, Capodieci P, Motzer R, Kiehn T, Phelan D, Halpern AC (2001) Cutaneous side-effects in cancer patients treated with the antiepidermal growth factor receptor antibody C225. Br J Dermatol 144(6):1169–1176

    Article  CAS  PubMed  Google Scholar 

  • Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177–183. doi:10.1038/nrc1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gainor JF, Shaw AT (2013) Emerging paradigms in the development of resistance to tyrosine kinase inhibitors in lung cancer. J Clin Oncol 31(31):3987–3996. doi:10.1200/JCO.2012.45.2029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7(3 Suppl):S56–S68. doi:10.1038/nmeth.1436

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Bunn PA Jr (2003) Targeting the epidermal growth factor receptor in non-small cell lung cancer. Clin Cancer Res 9(16 Pt 1):5813–5824

    CAS  PubMed  Google Scholar 

  • Heymach JV, Nilsson M, Blumenschein G, Papadimitrakopoulou V, Herbst R (2006) Epidermal growth factor receptor inhibitors in development for the treatment of non-small cell lung cancer. Clin Cancer Res 12(14 Pt 2):4441s–4445s. doi:10.1158/1078-0432.CCR-06-0286

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann R, Valencia A (2004) A gene network for navigating the literature. Nat Genet 36(7):664. doi:10.1038/ng0704-664

    Article  CAS  PubMed  Google Scholar 

  • Hornberg JJ, Bruggeman FJ, Westerhoff HV, Lankelma J (2006) Cancer: a systems biology disease. Bio Syst 83(2–3):81–90. doi:10.1016/j.biosystems.2005.05.014

    CAS  Google Scholar 

  • Houk BE, Bello CL, Poland B, Rosen LS, Demetri GD, Motzer RJ (2010) Relationship between exposure to sunitinib and efficacy and tolerability endpoints in patients with cancer: results of a pharmacokinetic/pharmacodynamic meta-analysis. Cancer Chemother Pharmacol 66(2):357–371. doi:10.1007/s00280-009-1170-y

    Article  CAS  PubMed  Google Scholar 

  • Karaman MW, Herrgard S, Treiber DK, Gallant P, Atteridge CE, Campbell BT, Chan KW, Ciceri P, Davis MI, Edeen PT, Faraoni R, Floyd M, Hunt JP, Lockhart DJ, Milanov ZV, Morrison MJ, Pallares G, Patel HK, Pritchard S, Wodicka LM, Zarrinkar PP (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26(1):127–132. doi:10.1038/nbt1358

    Article  CAS  PubMed  Google Scholar 

  • Kariya Y, Honma M, Suzuki H (2013) Systems-based understanding of pharmacological responses with combinations of multidisciplinary methodologies. Biopharm Drug Dispos 34(9):489–507. doi:10.1002/bdd.1865

    Article  CAS  PubMed  Google Scholar 

  • Khuri FR, Cohen V (2004) Molecularly targeted approaches to the chemoprevention of lung cancer. Clin Cancer Res 10(12 Pt 2):4249s–4253s. doi:10.1158/1078-0432.CCR-040019

    Article  CAS  PubMed  Google Scholar 

  • Kim TE, Murren JR (2002) Angiogenesis in non-small cell lung cancer. A new target for therapy. Am J Respir Med Drugs Devices Other Interv 1(5):325–338

    Article  CAS  Google Scholar 

  • Ku GY, Ilson DH (2013) Emerging tyrosine kinase inhibitors for esophageal cancer. Expert Opin Emerg Drugs 18(2):219–230. doi:10.1517/14728214.2013.805203

    Article  CAS  PubMed  Google Scholar 

  • Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258. doi:10.1146/annurev.immunol.14.1.233

    Article  CAS  PubMed  Google Scholar 

  • Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM (2003) In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clinical Cancer Res 9(1):327–337

    CAS  Google Scholar 

  • Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, Ginsberg MS, Kim ST, Baum CM, DePrimo SE, Li JZ, Bello CL, Theuer CP, George DJ, Rini BI (2006) Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J Clin Oncol 24(1):16–24. doi:10.1200/JCO.2005.02.2574

    Article  CAS  PubMed  Google Scholar 

  • Ono M, Hirata A, Kometani T, Miyagawa M, S-i U, Kinoshita H, Fujii T, Kuwano M (2004) Sensitivity to gefitinib (Iressa, ZD1839) in non-small cell lung cancer cell lines correlates with dependence on the epidermal growth factor (EGF) receptor/extracellular signal-regulated kinase 1/2 and EGF receptor/Akt pathway for proliferation. Mol Cancer Ther 3(4):465–472

    CAS  PubMed  Google Scholar 

  • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8s: new features for data integration and network visualization. Bioinformatics 27(3):431–432. doi:10.1093/bioinformatics/btq675

    Article  CAS  PubMed  Google Scholar 

  • Sridhar SS, Seymour L, Shepherd FA (2003) Inhibitors of epidermal-growth-factor receptors: a review of clinical research with a focus on non-small-cell lung cancer. Lancet Oncol 4(7):397–406

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Wadsworth S, Mercer J, Mueller C, Lynn K, Siekierka J, August A (2002) Opposing roles of serine/threonine kinases MEKK1 and LOK in regulating the CD28 responsive element in T-cells. Biochem J 363(Pt 1):175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuveson DA, Willis NA, Jacks T, Griffin JD, Singer S, Fletcher CD, Fletcher JA, Demetri GD (2001) STI571 inactivation of the gastrointestinal stromal tumor c-KIT oncoprotein: biological and clinical implications. Oncogene 20(36):5054–5058. doi:10.1038/sj.onc.1204704

    Article  CAS  PubMed  Google Scholar 

  • Vandyke K, Fitter S, Dewar AL, Hughes TP, Zannettino AC (2010) Dysregulation of bone remodeling by imatinib mesylate. Blood 115(4):766–774. doi:10.1182/blood-2009-08-237404

    Article  CAS  PubMed  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799. doi:10.1038/nm1087

    Article  CAS  PubMed  Google Scholar 

  • Walter SA, Cutler RE Jr, Martinez R, Gishizky M, Hill RJ (2003) Stk10, a new member of the polo-like kinase kinase family highly expressed in hematopoietic tissue. J Biol Chem 278(20):18221–18228. doi:10.1074/jbc.M212556200

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto N, Honma M, Suzuki H (2011) Off-target serine/threonine kinase 10 inhibition by erlotinib enhances lymphocytic activity leading to severe skin disorders. Mol Pharmacol 80(3):466–475. doi:10.1124/mol.110.070862

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research on Innovative Areas “HD-physiology” 22136015, by a Grant-in-Aid for Scientific Research (A) 24249034, and by a Grant-in-Aid for challenging Exploratory Research 26670265 from the Ministry of Education, Culture, Sports, Science, and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Kariya, Y., Honma, M., Suzuki, H. (2016). Systems Pharmacology of Tyrosine Kinase Inhibitor-Associated Toxicities. In: Mager, D., Kimko, H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-44534-2_16

Download citation

Publish with us

Policies and ethics