Skip to main content

Multi-scale Modeling of Drug Action in the Nervous System

  • Chapter
  • First Online:
Systems Pharmacology and Pharmacodynamics

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 23))

  • 2485 Accesses

Abstract

Drug discovery and development in CNS diseases has one of the greatest failure rates of all indications. This is due to poor translation ability of preclinical animal models for diseases like schizophrenia, Alzheimer’s disease , and depression. In addition, treatment of patients in real-life situations is far from perfect, and polypharmacy is attempted without a rational understanding of the interactions of the various drugs with each other and with the brain circuits. A possible alternative is to develop an in silico model of relevant brain circuits using the existing expertise of computational neurosciences to which very specific neuropharmacology processes are added. This chapter illustrates a multi-scale drug action model for CNS diseases. We show various applications of this platform in actual CNS research and development projects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agid O, Siu CO, Pappadopulos E, Vanderburg D, Remington G (2013). Early prediction of clinical and functional outcome in schizophrenia. Eur Neuropsychopharmacol 23(8):842–851

    Google Scholar 

  • Anderson KK, Fuhrer R, Abrahamowicz M, Malla AK (2012) The incidence of first-episode schizophrenia-spectrum psychosis in adolescents and young adults in Montreal: an estimate from an administrative claims database. Can J Psychiatry 57:626–633

    PubMed  Google Scholar 

  • Ballon J, Stroup TS (2013) Polypharmacy for schizophrenia. Curr Opin Psychiatry 26:208–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Cummings JL, Morstorf T, Zhong K (2014) Alzheimer’s disease drug-development pipeline: few candidates, frequent failures. Alzheimers Res Ther 6:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Davis JM (1976) Comparative doses and costs of antipsychotic medication. Arch Gen Psychiatry 33:858–861

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Chen N (2004) Dose response and dose equivalence of antipsychotics. J Clin Psychopharmacol 24:192–208

    Article  CAS  PubMed  Google Scholar 

  • Davis JM, Chen N, Glick ID (2003) A meta-analysis of the efficacy of second-generation antipsychotics. Arch Gen Psychiatry 60:553–564

    Article  CAS  PubMed  Google Scholar 

  • Elie D, Poirier M, Chianetta J, Durand M, Gregoire C, Grignon S (2010) Cognitive effects of antipsychotic dosage and polypharmacy: a study with the BACS in patients with schizophrenia and schizoaffective disorder. J Psychopharmacol 24:1037–1044

    Article  CAS  PubMed  Google Scholar 

  • Fujita J, Nishida A, Sakata M, Noda T, Ito H (2013) Excessive dosing and polypharmacy of antipsychotics caused by pro re nata in agitated patients with schizophrenia. Psychiatry Clin Neurosci 67(5):345–351

    Google Scholar 

  • Geddes J, Freemantle N, Harrison P, Bebbington P (2000) Atypical antipsychotics in the treatment of schizophrenia: systematic overview and meta-regression analysis. BMJ 321:1371–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerts H (2009) Of mice and men: bridging the translational disconnect in CNS drug discovery. CNS Drugs 23:915–926

    Article  CAS  PubMed  Google Scholar 

  • Geerts H, Spiros A, Roberts P, Carr R (2012a) Has the time come for predictive computer modeling in CNS drug discovery and development? CPT Pharmacomet Syst Pharmacol 1:e16

    Article  CAS  Google Scholar 

  • Geerts H, Spiros A, Roberts P, Twyman R, Alphs L, Grace AA (2012b) Blinded prospective evaluation of computer-based mechanistic schizophrenia disease model for predicting drug response. PLoS One 7:e49732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerts H, Roberts P, Spiros A (2013a) A quantitative system pharmacology computer model for cognitive deficits in schizophrenia. CPT Pharmacometrics Syst Pharmacol 2:e36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerts H, Roberts P, Spiros A, Carr R (2013b) A strategy for developing new treatment paradigms for neuropsychiatric and neurocognitive symptoms in Alzheimer’s disease. Front Pharmacol 4:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerts H, Spiros A, Roberts P, Carr R (2013c) Quantitative systems pharmacology as an extension of PK/PD modeling in CNS research and development. J Pharmacokinet Pharmacodyn 40:257–265

    Article  CAS  PubMed  Google Scholar 

  • Geerts H, Roberts P, Spiros A, Potkin S (2015) Understanding responder neurobiology in schizophrenia using a quantitative systems pharmacology model: application to iloperidone. J Psychopharmacol 29:372–382

    Article  CAS  PubMed  Google Scholar 

  • Gellad WF, Aspinall SL, Handler SM, Stone RA, Castle N, Semla TP, Good CB, Fine MJ, Dysken M, Hanlon JT (2012) Use of antipsychotics among older residents in VA nursing homes. Med Care 50:954–960

    Article  PubMed  PubMed Central  Google Scholar 

  • Goren JL, Meterko M, Williams S, Young GJ, Baker E, Chou CH, Kilbourne AM, Bauer MS (2013) Antipsychotic prescribing pathways, polypharmacy, and clozapine use in treatment of schizophrenia. Psychiatr Serv 64:527–533

    Article  PubMed  Google Scholar 

  • Harvey PO, Armony J, Malla A, Lepage M (2010) Functional neural substrates of self-reported physical anhedonia in non-clinical individuals and in patients with schizophrenia. J Psychiatr Res 44:707–716

    Article  PubMed  Google Scholar 

  • Haslemo T, Olsen K, Lunde H, Molden E (2012) Valproic Acid significantly lowers serum concentrations of olanzapine—an interaction effect comparable with smoking. Ther Drug Monit 34:512–517

    Article  CAS  PubMed  Google Scholar 

  • Juckel G, Schlagenhauf F, Koslowski M, Filonov D, Wustenberg T, Villringer A, Knutson B, Kienast T, Gallinat J, Wrase J, Heinz A (2006) Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology 187:222–228

    Article  CAS  PubMed  Google Scholar 

  • Jureidini J, Tonkin A, Jureidini E (2013) Combination pharmacotherapy for psychiatric disorders in children and adolescents: prevalence, efficacy, risks and research needs. Paediatr Drugs 15(5):377–391

    Google Scholar 

  • Kroken RA, Johnsen E (2012) Is rational antipsychotic polytherapy feasible? A selective review. Curr Psychiatry Rep 14:244–251

    Article  PubMed  Google Scholar 

  • Kroken RA, Johnsen E, Ruud T, Wentzel-Larsen T, Jorgensen HA (2009) Treatment of schizophrenia with antipsychotics in Norwegian emergency wards, a cross-sectional national study. BMC Psychiatry 9:24

    Article  PubMed  PubMed Central  Google Scholar 

  • Kukreja S, Kalra G, Shah N, Shrivastava A (2013) Polypharmacy in psychiatry: a review. Mens Sana Monogr 11:82–99

    Article  PubMed  PubMed Central  Google Scholar 

  • Langle G, Steinert T, Weiser P, Schepp W, Jaeger S, Pfiffner C, Frasch K, Eschweiler GW, Messer T, Croissant D, Becker T, Kilian R (2012) Effects of polypharmacy on outcome in patients with schizophrenia in routine psychiatric treatment. Acta Psychiatr Scand 125:372–381

    Article  CAS  PubMed  Google Scholar 

  • Lieberman JA (2007) Effectiveness of antipsychotic drugs in patients with chronic schizophrenia: efficacy, safety and cost outcomes of CATIE and other trials. J Clin Psychiatry 68:e04

    Article  PubMed  Google Scholar 

  • Liu J, Ogden A, Comery TA, Spiros A, Roberts P, Geerts H (2014) Prediction of efficacy of vabicaserin, a 5-HT2C agonist, for the treatment of schizophrenia using a quantitative systems pharmacology model. CPT Pharmacomet Syst Pharmacols 3:e111

    Article  CAS  Google Scholar 

  • Nicholas AP (2013) Dual immunofluorescence study of citrullinated proteins in Alzheimer diseased frontal cortex. Neurosci Lett 545:107–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olfson M, Mojtabai R, Sampson NA, Hwang I, Druss B, Wang PS, Wells KB, Pincus HA, Kessler RC (2009) Dropout from outpatient mental health care in the United States. Psychiatr Serv 60:898–907

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkham A, Loughead J, Ruparel K, Wu WC, Overton E, Gur R (2011a) Resting quantitative cerebral blood flow in schizophrenia measured by pulsed arterial spin labeling perfusion MRI. Psychiatry Res 194:64–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Pinkham AE, Loughead J, Ruparel K, Overton E, Gur RE, Gur RC (2011b) Abnormal modulation of amygdala activity in schizophrenia in response to direct- and averted-gaze threat-related facial expressions. Am J Psychiatry 168:293–301

    Article  PubMed  Google Scholar 

  • Povysheva NV, Zaitsev AV, Kroner S, Krimer OA, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2007) Electrophysiological differences between neurogliaform cells from monkey and rat prefrontal cortex. J Neurophysiol 97:1030–1039

    Article  CAS  PubMed  Google Scholar 

  • Povysheva NV, Zaitsev AV, Rotaru DC, Gonzalez-Burgos G, Lewis DA, Krimer LS (2008) Parvalbumin-positive basket interneurons in monkey and rat prefrontal cortex. J Neurophysiol 100:2348–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt LA (2012) Characteristics of adults with serious mental illness in the United States household population in 2007. Psychiatr Serv 63:1042–1046

    Article  PubMed  Google Scholar 

  • Putnam DK, Sun J, Zhao Z (2011) Exploring schizophrenia drug-gene interactions through molecular network and pathway modeling. AMIA Annu Symp Proc 2011:1127–1133

    PubMed  PubMed Central  Google Scholar 

  • Roberts PD, Spiros A, Geerts H (2012) Simulations of symptomatic treatments for Alzheimer’s disease: computational analysis of pathology and mechanisms of drug action. Alzheimers Res Ther 4:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh D, Chang JG, Kim CH, Cho HS, An SK, Jung YC (2014) Antipsychotic polypharmacy and high-dose prescription in schizophrenia: a 5-year comparison. Aust N Z J Psychiatry 48(1):52–60

    Google Scholar 

  • Soderberg MM, Haslemo T, Molden E, Dahl ML (2013). Influence of FMO1 and 3 polymorphisms on serum olanzapine and its N-oxide metabolite in psychiatric patients. Pharmacogenomics J 13(6):544–550

    Google Scholar 

  • Sotnikova TD, Caron MG, Gainetdinov RR (2009) Trace amine-associated receptors as emerging therapeutic targets. Mol Pharmacol 76:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiros A, Edelstein-Keshet L (1998) Testing a model for the dynamics of actin structures with biological parameter values. Bull Math Biol 60:275–305

    Article  CAS  PubMed  Google Scholar 

  • Spiros A, Carr R, Geerts H (2010) Not all partial dopamine D(2) receptor agonists are the same in treating schizophrenia. Exploring the effects of bifeprunox and aripiprazole using a computer model of a primate striatal dopaminergic synapse. Neuropsychiatr Dis Treat 6:589–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spiros A, Roberts P, Geerts H (2012) A quantitative systems pharmacology computer model for schizophrenia efficacy and extrapyramidal side effects. Drug Dev Res 73:196–213

    Article  CAS  Google Scholar 

  • Spiros A, Roberts P, Geerts H (2014) A computer-based quantitative systems pharmacology model of negative symptoms in schizophrenia: exploring glycine modulation of excitation-inhibition balance. Front Pharmacol 5:229

    Article  PubMed  PubMed Central  Google Scholar 

  • Suokas JT, Suvisaari JM, Haukka J, Korhonen P, Tiihonen J (2013) Description of long-term polypharmacy among schizophrenia outpatients. Soc Psychiatry Psychiatr Epidemiol 48:631–638

    Article  PubMed  Google Scholar 

  • Tani H, Uchida H, Suzuki T, Fujii Y, Mimura M (2013) Interventions to reduce antipsychotic polypharmacy: a systematic review. Schizophr Res 143:215–220

    Article  PubMed  Google Scholar 

  • Tansey KE, Guipponi M, Perroud N, Bondolfi G, Domenici E, Evans D, Hall SK, Hauser J, Henigsberg N, Hu X, Jerman B, Maier W, Mors O, O’Donovan M, Peters TJ, Placentino A, Rietschel M, Souery D, Aitchison KJ, Craig I, Farmer A, Wendland JR, Malafosse A, Holmans P, Lewis G, Lewis CM, Stensbol TB, Kapur S, McGuffin P, Uher R (2012) Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis. PLoS Med 9:e1001326

    Article  PubMed  PubMed Central  Google Scholar 

  • Volk DW, Lewis DA (2010) Prefrontal cortical circuits in schizophrenia. Curr Top Behav Neurosci 4:485–508

    Article  PubMed  Google Scholar 

  • Waddington JL, Youssef HA, Kinsella A (1998) Mortality in schizophrenia. Antipsychotic polypharmacy and absence of adjunctive anticholinergics over the course of a 10-year prospective study. Br J Psychiatry 173:325–329

    Article  CAS  PubMed  Google Scholar 

  • Yu AP, Ben-Hamadi R, Birnbaum HG, Atanasov P, Stensland MD, Philips G (2009) Comparing the treatment patterns of patients with schizophrenia treated with olanzapine and quetiapine in the Pennsylvania Medicaid population. Curr Med Res Opin 25:755–764

    Article  CAS  PubMed  Google Scholar 

  • Zaitsev AV, Povysheva NV, Gonzalez-Burgos G, Rotaru D, Fish KN, Krimer LS, Lewis DA (2009) Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex 19:1597–1615

    Article  PubMed  Google Scholar 

  • Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63:856–864

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Geerts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Geerts, H., Roberts, P., Spiros, A., Carr, R. (2016). Multi-scale Modeling of Drug Action in the Nervous System. In: Mager, D., Kimko, H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-44534-2_14

Download citation

Publish with us

Policies and ethics