Skip to main content

Energy Balance of Cardoon (Cynara cardunculus L.) Cultivation and Pyrolysis

  • Conference paper
  • First Online:
Perennial Biomass Crops for a Resource-Constrained World

Abstract

Cynara cardunculus L. is a promising energy crop for energy production. The Biomass Research Centre realized experimental fields to test in Umbria region (Italy) the cultivation of a Spanish variety of cardoon. Biomass yield was 6.7 t d.m./ha, equal to about 103 GJ/ha of energy. The energy spent to cultivate cardoon, transport it and convert it into energy is estimated to be 9.3 GJ/ha. Energy required to pyrolyze Cardoon resulted to be 1.7 MJ/kg. The net energy yield per hectare of cultivated surface, is 60.8 GJ/ha, this means that about 59 % of the energy contained in the original cardoon biomass could be converted into heat, electricity and biochar. Energy Return On Investment is 6.5. These results have never been presented for cardoon, which has proven to be an efficient energy crop to produce bioenergy and biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari B (2009) Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use, Biomass and Bioenergy. 33(5):810–816

    Google Scholar 

  • Baratieri M, Baggio P, Fiori L, Grigiante M (2008) Biomass as an energy source: thermodynamic constraints on the performance of the conversion process. Bioresour Technol 99:7063–7073

    Article  CAS  PubMed  Google Scholar 

  • Bidini G, Fantozzi F, Buratti C, Bartocci P (2007) Most suitable areas for the cultivation of herbaceous crops in Umbria region (Italy) and biomass production evaluation. 15th European Biomass Conference and Exhibition, 7–11th May, Berlin, Germany

    Google Scholar 

  • Bidini G, Fantozzi F, Bartocci P, D’Alessandro B, D’Amico M, Laranci P, Scozza E, Zagaroli M (2015) Recovery of precious metals from scrap printed circuit boards through pyrolysis. J Anal Appl Pyrol 111(1):140–147

    Article  CAS  Google Scholar 

  • Buonocore E, Franzese PP, Ulgiati S (2012) Assessing the environmental performance and sustainability of bioenergy production in Sweden: a life cycle assessment perspective. Energy 37:69–78

    Article  Google Scholar 

  • Buratti C, Barbanera M, Bartocci P, Fantozzi F (2015) Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion. Bioresour Technol 186:154–162

    Article  CAS  PubMed  Google Scholar 

  • CEN/TS 15439:2006. Biomass gasification. Tar and particles in product gases. Sampling and analysis

    Google Scholar 

  • Cherubini F, Ulgiati S (2010) Crop residues as raw materials for biorefinery systems—a LCA case study. Appl Energy 87:47–57

    Article  CAS  Google Scholar 

  • Cotana F, Cavalaglio G, Gelosia M, Coccia V, Petrozzi A, Ingles D, Pompili E (2015) A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind Crop Prod 69:424–432

    Article  CAS  Google Scholar 

  • Curt MD, Sanchez G, Fernandez J (2002) The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass and Bioenergy 23:33–46

    Article  CAS  Google Scholar 

  • D’Alessandro B, D’Amico M, Desideri U, Fantozzi F (2013) The IPRP (Integrated Pyrolysis Regenerated Plant) technology: from concept to demonstration. Appl Energy 101:423–431

    Article  Google Scholar 

  • D’AlessandroB, Bartocci P, Fantozzi F (2011) Gas turbines CHP for bioethanol and biodiesel production without waste streams. Proceedings of the ASME Turbo Expo, ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, GT2011; Vancouver, BC; Canada; 6 June 2011 through 10 June 2011. 1:691–700

    Google Scholar 

  • Daugaard DE, Brown RC (2003) Enthalpy for pyrolysis for several types of biomass. Energy & Fuels 17:934–939

    Article  CAS  Google Scholar 

  • Encinar JM, Gonzalez JF, Gonzalez J (2000) Fixed-bed pyrolysis of Cynara cardunculus L. Product yields and compositions. Fuel Process Technol 68:209–222

    Article  CAS  Google Scholar 

  • Fantozzi F, D’Alessandro B, Desideri U (2007) An IPRP (Integrated Pyrolysis Regenerated Plant) Microscale demonstrative unit in central Italy. ASME paper GT 2007-28000, Montreal, Canada ASME Turbo Expo 2007

    Google Scholar 

  • Fantozzi F, D’Alessandro B, Bartocci P, Desideri U, Bidini G (2009) Performance evaluation of the IPRP technology when fuelled with biomass residuals and waste feedstocks. Proceedings of the ASME Turbo Expo, ASME Turbo Expo; Orlando, FL; United States; 8 June 2009 through 12 June 2009. 1:449–458

    Google Scholar 

  • Fantozzi F, D’Alessandro B, Bartocci P, Desideri U, Bidini G (2010) Assessment of the energy conversion of whole oil fruits with a pyrolysis and gas turbine process. Proceedings of the ASME Turbo Expo. 1:685–693. ASME Turbo Expo 2010: Power for Land, Sea, and Air, GT 2010; Glasgow; United Kingdom; 14 June 2010 through 18 June 2010

    Google Scholar 

  • Fantozzi F, Bartocci P, D’Alessandro B, Arampatzis S, Manos B (2014) Public-private partnerships value in bioenergy projects: economic feasibility analysis based on two case studies. Biomass and Bioenergy 66:387–397

    Article  Google Scholar 

  • Fernández J, Marquez L, Venturi P (1997) Technical and economic aspects of Cynara Cardunculus L.: an energy crop for the Mediterranean region. 1:48–51

    Google Scholar 

  • Fernández J, Curt MD, Aguado PL (2006) Industrial applications of Cynara cardunculus L. for energy and other uses. Ind Crop Prod 24:222–229

    Article  Google Scholar 

  • Gaunt JL, Lehman J (2008) Energy balance and emissions associated with biochar sequestration and pyrolysis bioenergy production. Environ Sci Technol 42:4152–4158

    Article  CAS  PubMed  Google Scholar 

  • Goe M, Gaustad G (2014) Strengthening the case for recycling photovoltaics: an energy payback analysis. Appl Energy 120:41–48

    Article  Google Scholar 

  • Gominho J, Lourenço A, Palma P, Lourenço ME, Curt MD, Fernández J, Pereira H (2011) Large scale cultivation of Cynara cardunculus L. for biomass production—a case study. Ind Crop Prod 33:1–6

    Article  Google Scholar 

  • Iqbal Y, Gauder M, Claupein W, Graeff-Hönninger S, Lewandowski I (2015) Yield and quality development comparison between miscanthus and switchgrass over a period of 10 years. Energy. 89(1):268–276

    Google Scholar 

  • Jeffery S, Verheijena FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Lewandowski I (2015) Securing a sustainable biomass supply in a growing bioeconomy. Glob Food Sec 6:34–42

    Article  Google Scholar 

  • Manos B, Bartocci P, Partalidou M, Fantozzi F, Arampatzis S (2014) Review of public-private partnerships in agro-energy districts in Southern Europe: The cases of Greece and Italy. Renew Sust Energy Rev 39:667–678

    Article  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    Article  CAS  PubMed  Google Scholar 

  • Paethanom A, Yoshikawa K (2012) Influence of pyrolysis temperature on rice husk char characteristics and its tar adsorption capability. Energies 5:4941–4951

    Article  CAS  Google Scholar 

  • Paethanom A, Nakahara S, Kobayashi M, Prawisudha P, Yoshikawa K (2012) Performance of tar removal by absorption and adsorption for biomass gasification. Fuel Process Technol 104:144–154

    Article  CAS  Google Scholar 

  • Paethanom A, Bartocci P, D’Alessandro B, D’Amico M, Testarmata F, Moriconi N, Slopiecka K, Yoshikawa K, Fantozzi F (2013) A low-cost pyrogas cleaning system for power generation: scaling up from lab to pilot. Appl Energy 111:1080–1088

    Article  CAS  Google Scholar 

  • Phuphuakrat T, Namioka T, Yoshikawa K (2011) Absorptive removal of biomass tar using water and oily materials. Bioresour Technol 102:543–549

    Article  CAS  PubMed  Google Scholar 

  • Sastre CM, Maletta E, González-Arechavala Y, Ciria P, Santos AM, del Val A, Pérez P, Carrasco J (2014) Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: global warming and energy yield assessments. Appl Energy 114:737–748

    Article  Google Scholar 

  • Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497

    Article  CAS  Google Scholar 

  • UNI 14774-2:2010 Solid biofuels—determination of moisture content—oven dry method—part 2: total moisture—simplified method. Italian Organization for Standardization, Rome, Italy

    Google Scholar 

  • UNI 14775:2010 Solid biofuels—determination of ash content. Italian Organization for Standardization, Rome, Italy

    Google Scholar 

  • UNI 14918:2010 Solid biofuels—determination of calorific value. Italian Organization for Standardization, Rome, Italy

    Google Scholar 

  • UNI 15104:2011 Solid biofuels. Determination of total content of carbon, hydrogen and nitrogen. Instrumental methods. Italian Organization for Standardization, Rome, Italy

    Google Scholar 

  • UNI 15148: 2009 Solid biofuels. Determination of the content of volatile matter. Italian Organization for Standardization, Rome, Italy

    Google Scholar 

  • Weißbach D, Ruprecht G, Huke A, Czerski K, Gottlieb S, Hussein A (2013) Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy 52:210–221

    Article  Google Scholar 

  • Xue S, Lewandowski I, Wang X, Yi Z (2016) Assessment of the production potentials of Miscanthus on marginal land in China. Renew Sust Energy Rev 54(1):932–943

    Article  Google Scholar 

  • Yang H, Kudo S, Kuo HP, Noriaga K, Mori A, Masek O (2013) Estimation of enthalpy of bio-oil vapor and heat required for pyrolysis of biomass. Energy & Fuels 27:2675–2686

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. Jesus Fernandez of the Politechnical University of Madrid for the cardoon seeds he had selected. The authors would also like to thank the would also like to thank the Foundation for Agricultural Instruction of the University of Perugia; Dr. V. Mazza for the analysis of data obtained from experimental fields; Dr. R. Petesse for the analysis of data obtained by pyrolysis tests. Eng. Bruno D’Alessandro should be acknowledged for calculations on mass and energy balances of the IPRP pyrolysis plant. Dr.ess Pilar Ciria and dr. Luis Saul Esteban of CEDERCIEMAT (Soria, Spain) should be acknowledged for their explanations on cardoon crop productivity and cardoon combustion tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bartocci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Bartocci, P., Bidini, G., Cotana, F., Fantozzi, F. (2016). Energy Balance of Cardoon (Cynara cardunculus L.) Cultivation and Pyrolysis. In: Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M. (eds) Perennial Biomass Crops for a Resource-Constrained World. Springer, Cham. https://doi.org/10.1007/978-3-319-44530-4_21

Download citation

Publish with us

Policies and ethics