Skip to main content

A Review of Frost and Chilling Stress in Miscanthus and Its Importance to Biomass Yield

  • Conference paper
  • First Online:
Book cover Perennial Biomass Crops for a Resource-Constrained World

Abstract

Miscanthus is a perennial grass used as a low input biomass crop. Yield limitations are caused mainly by abiotic stresses such as cold, drought, and salinity. This review summarizes the current knowledge of the cold tolerance of miscanthus. Miscanthus has a relatively high cold tolerance compared to related C4 crops such as maize, sorghum, or sugarcane. M. × giganteus, the most commonly planted clone, has a high chilling tolerance compared to most other miscanthus genotypes tested thus far. A small number of recently reported genotypes with an even higher cold tolerance allow for further breeding improvements. The high rates of photosynthesis at low temperatures of M. × giganteus are not an effect of special protective mechanisms but rather of increased production of photosynthetic enzymes. M. × giganteus is relatively susceptible to frost damage in its rhizomes as well as its aboveground parts. Developing improved miscanthus varieties with increased cold tolerance could result in earlier canopy formation and a longer growing season resulting in larger biomass accumulation over the year and higher yields. Increased cold tolerance would allow to expand the miscanthus growing area and to reduce the risk of winter mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An G-H, Miyakawa S, Kawahara A, Osaki M, Ezawa T (2008) Community structure of arbuscular mycorrhizal fungi associated with pioneer grass species Miscanthus sinensis in acid sulfate soils: habitat segregation along pH gradients. Soil Sci Plant Nutr 54:517–528

    Article  Google Scholar 

  • Angelini LG, Ceccarini L, Nassi o Di Nasso N, Bonari E (2009) Comparison of Arundo donax L. and Miscanthus × giganteus in a long-term field experiment in central Italy: analysis of productive characteristics and energy balance. Biomass Bioenergy 33:635–643

    Article  Google Scholar 

  • Anzoua KG, Suzuki K, Fujita S, Toma Y, Yamada T (2015) Evaluation of morphological traits, winter survival and biomass potential in wild Japanese Miscanthus sinensis Anderss. Populations in northern Japan. Grassland Sci 61:83–91

    Article  Google Scholar 

  • Arundale RA, Dohleman FG, Heaton EA, Mcgrath JM, Voigt TB, Long SP (2014) Yields of Miscanthus × giganteus and Panicum virgatum decline with stand age in the Midwestern USA. GCB Bioenergy 6:1–13

    Article  Google Scholar 

  • Beale CV, Bint DA, Long SP (1996) Leaf photosynthesis in the C4-grass Miscanthus × giganteus, growing in the cool temperate climate of southern England. J Exp Bot 47:267–273

    Article  CAS  Google Scholar 

  • Belintani NG, Guerzoni JTS, Moreira RMP, Vieira LGE (2012) Improving low-temperature tolerance in sugarcane by expressing the ipt gene under a cold inducible promoter. Biol Plant 56:71–77

    Article  CAS  Google Scholar 

  • Chou C, Chang F (1988) Population study of Miscanthus floridulus II. Ecotypic variation of M. floridulus and M. transmorrisonensis as affected by altitude in Nantou, Taiwan. Bot Bull Acad Sin 29:301–314

    Google Scholar 

  • Chou C-H, Lee Y, Chiu CY, Wang YC, Hsu FH (1991) Growth performance of M. floridulus and M. transmorrisonensis and their acclimation to temperatures and water stresses. Bot Bull Acad Sin 32:87–96

    Google Scholar 

  • Christian DG, Haase E (2001) Agronomy of Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. Earthscan, London, pp 21–45

    Google Scholar 

  • Clifton-Brown JC, Jones MB (1997) The thermal response of leaf extension rate in genotypes of the C4-grass Miscanthus: an important factor in determining the potential productivity of different genotypes. J Exp Bot 48:1573–1581

    CAS  Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2000) Overwintering problems of newly established Miscanthus plantations can be overcome by identifying genotypes with improved rhizome cold tolerance. New Phytol 148:287–294

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2002) Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agron 16:97–110

    Article  Google Scholar 

  • Clifton-Brown JC, Neilson B, Lewandowski I, Jones MB (2000) The modelled productivity of Miscanthus × giganteus (GREEF et DEU) in Ireland. Ind Crops Prod 12:97–109

    Article  Google Scholar 

  • Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jørgensen U, Mortensen JV, Riche AB, Schwarz K-U, Tayebi K, Teixeira F (2001a) Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93:1013–1019

    Article  Google Scholar 

  • Clifton-Brown JC, Long SP, Jørgensen U (2001b) Miscanthus productivity. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. Earthscan, London, pp 46–67

    Google Scholar 

  • Clifton-Brown JC, Stampfl PF, Jones MB (2004) Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions. Glob Chang Biol 10:509–518

    Article  Google Scholar 

  • Davey CL, Jones LE, Squance M, Purdy SJ, Maddison AL, Cunniff J, Donnison I, Clifton-Brown JC (2015) Radiation capture and conversion efficiencies of Miscanthus sacchariflorus, M. sinensis and their naturally occurring hybrid M. × giganteus. GCB Bioenergy. doi:10.1111/gcbb.12331

    Google Scholar 

  • Dohleman FG, Long SP (2009) More productive than maize in the Midwest: How does Miscanthus do it? Plant Physiol 150:2104–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Nose A, Wasano K (1999) Effects of chilling temperature on photosynthetic rates, photosynthetic enzyme activities and metabolite levels in leaves of three sugarcane species. Plant Cell Environ 22:317–324

    Article  CAS  Google Scholar 

  • Dwiyanti MS, Stewart JR, Nishiwaki A, Yamada T (2014) Natural variation in Miscanthus sinensis seed germination under low temperatures. Grassland Sci 60:194–198

    Google Scholar 

  • Eitzinger J, Kössler C (2002) Microclimatological characteristics of a miscanthus (Miscanthus cv. giganteus) stand during stable conditionsat night in the nonvegetative winter period. Theor Appl Climatol 72:245–257

    Article  Google Scholar 

  • Ezaki B, Nagao E, Yamamoto Y, Nakashima S, Enomoto T (2008) Wild plants, Andropogon virginicus L. and Miscanthus sinensis Anders, are tolerant to multiple stresses including aluminum, heavy metals and oxidative stresses. Plant Cell Rep 27:951–961

    Article  CAS  PubMed  Google Scholar 

  • Farage PK, Blowers D, Long SP, Baker NR (2006) Low growth temperatures modify the efficiency of light use by photosystem II for CO2 assimilation in leaves of two chilling-tolerant C4 species, Cyperus longus L. and Miscanthus × giganteus. Plant Cell Environ 29:720–728

    Article  CAS  PubMed  Google Scholar 

  • Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Genotypic variation in cold tolerance influences the yield of Miscanthus. Ann Appl Biol 149:337–345

    Article  Google Scholar 

  • Fonteyne S, Lootens P, Muylle H, Van den Ende W, De Swaef T, Reheul D, Roldán-Ruiz I (2015) Chilling tolerance and early vigor related characteristics evaluated in two Miscanthus genotypes. Photosynthetica. doi:10.1007/s11099-016-0193-y

    Google Scholar 

  • Friesen PC, Peixoto MM, Busch FA, Johnson DC, Sage RF (2014) Chilling and frost tolerance in Miscanthus and Saccharum genotypes bred for cool temperate climates. J Exp Bot 63:3749–3758

    Article  Google Scholar 

  • Friesen PC, Peixoto MM, Lee DK, Sage RF (2015) Sub-zero cold tolerance of Spartina pectinata (prairie cordgrass) and Miscanthus × giganteus: candidate bioenergy crops for cool temperate climates. J Exp Bot 66:4403–4413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritz M, Formowitz B, Jodl S, Eppel-Hotz A, Kuhn W (2009) Miscanthus als nachwachsender rohstoff—ergebnisse aus bayerischen forschungsarbeiten. Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe (TFZ), Straubing

    Google Scholar 

  • Głowacka K, Adhikari S, Peng J, Gifford J, Juvik JA, Long SP, Sacks EJ (2014a) Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus × giganteus. J Exp Bot 65:5267–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Głowacka K, Clark LV, Adhikari S, Peng J, Ryan Stewart J, Nishiwaki A, Yamada T, Jørgensen U, Hodkinson TR, Gifford J, Juvik JA, Sacks EJ (2014b) Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 7:386–404

    Article  Google Scholar 

  • Głowacka K, Jørgensen U, Kjeldsen JB, Korup K, Spitz I, Sacks EJ, Long SP (2015a) Can the exceptional chilling tolerance of C4 photosynthesis found in Miscanthus × giganteus be exceeded? Screening of a novel Miscanthus Japanese germplasm collection. Ann Bot 115:981–990

    Article  PubMed  PubMed Central  Google Scholar 

  • Głowacka K, Ahmed A, Sharma S, Abbott T, Comstock JC, Comstock JC, Long SP, Sacks EJ (2015b). Can chilling tolerance of C4 photosynthesis in Miscanthus be transferred to sugarcane? GCB Bioenergy. doi:10.1111/gcbb.12283

    Google Scholar 

  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Smith P (2009a) The development of MISCANFOR, a new Miscanthus crop growth model: towards more robust yield predictions under different climatic and soil conditions. GCB Bioenergy 1:154–170

    Article  Google Scholar 

  • Hastings A, Clifton-Brown J, Wattenbach M, Mitchell CP, Stampfl P, Smith P (2009b) Future energy potential of Miscanthus in Europe. GCB Bioenergy 1:180–196

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, Mcisaac GF, David MB, Voigt TB, Boersma NN, Long SP (2010) Miscanthus: a promising biomass crop. Adv Bot Res 56:76–124

    Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA (2002) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hope H, McElroy A (1990) Low-temperature tolerance of switchgrass (Panicum virgatum L.). Can J Plant Sci 70:1091–1096

    Article  Google Scholar 

  • Janská A, Marsík P, Zelenková S, Ovesná J (2010) Cold stress and acclimation—what is important for metabolic adjustment? Plant Biol 12:395–405

    Article  PubMed  Google Scholar 

  • Jensen EF, Robson PRH, Norris J, Cookson A, Farrar K, Donnison IS, Clifton-Brown JC (2013) Flowering induction in the bioenergy grass Miscanthus sacchariflorus is a quantitative short-day response, whilst delayed flowering under long days increases biomass accumulation. J Exp Bot 64:541–552

    Article  CAS  PubMed  Google Scholar 

  • Jones MB, Finnan J, Hodkinson TR (2015) Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy 7:375–385

    Article  Google Scholar 

  • Jørgensen U, Muhs H-J (2001) Miscanthus breeding and improvement. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. Earthscan, London, pp 68–85

    Google Scholar 

  • Jørgensen U, Schwarz K-U (2000) Why do basic research? A lesson from commercial exploitation of miscanthus. New Phytol 148:190–193

    Article  Google Scholar 

  • Kao W, Chang K-W (2001) Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan. Aust J Bot 49:509–514

    Article  Google Scholar 

  • Kao W, Tsai T, Chen W (1998) A comparative study of Miscanthus floridulus (Labill) Warb and M. transmorrisonensis Hayata: photosynthetic gas exchange, leaf characteristics and growth in controlled environments. Ann Bot 81:295–299

    Article  Google Scholar 

  • Kucharik CJ, VanLoocke A, Lenters JD, Motew MM (2013) Miscanthus establishment and overwintering in the Midwest USA: a regional modeling study of crop residue management on critical minimum soil temperatures. PLoS One 8, e68847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski I, Clifton-Brown JCJ, Scurlock JMO, Huisman W (2000) Miscanthus: European experience with a novel energy crop. Biomass Bioenergy 19:209–227

    Article  CAS  Google Scholar 

  • Lewandowski I, Kalinina O, Kiesel A, Clifton-Brown J, Farrar K, Donnison I, Huxley L, Nunn C, Trindade L, Dolstra O, van der Weijde T, van der Linden G, Chen C-L, Roland-Ruiz I, Muylle H, Lootens P, Fonteyne S, Harding G, Mos M, Schwarz KU, Meyer H, Muller-Samann K, Xi Q, Özgüven M, Khokhlov N, Tarakanov I, Schüle H (2015) OPTIMISC—developing miscanthus production systems for marginal lands. In: Proceedings of the 23rd European biomass conference and exhibition, Vienna, Austria, pp 6–8

    Google Scholar 

  • Long SP, Spence AK (2013) Toward cool C(4) crops. Annu Rev Plant Biol 64:701–722

    Article  CAS  PubMed  Google Scholar 

  • Matsuoka M, Furbank RT, Fukayama H, Miyao M (2001) Molecular engineering of C4 photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 52:297–314

    Article  CAS  PubMed  Google Scholar 

  • Maughan M, Bollero G, Lee DK, Darmody R, Bonos S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, Williams L, Miguez F, Voigt T (2012) Miscanthus × giganteus productivity: the effects of management in different environments. GCB Bioenergy 4:253–265

    Article  Google Scholar 

  • Miguez FE, Villamil MB, Long SP, Bollero GA (2008) Meta-analysis of the effects of management factors on Miscanthus × giganteus growth and biomass production. Agric For Meteorol 148:1280–1292

    Article  Google Scholar 

  • Mortaignie E (2014) Evaluatie van het effect van koudestress op de jeugdgroei van Miscanthus. Master thesis, Ghent University

    Google Scholar 

  • Naidu SL, Long SP (2004) Potential mechanisms of low-temperature tolerance of C4 photosynthesis in Miscanthus × giganteus: an in vivo analysis. Planta 220:145–155

    Article  CAS  PubMed  Google Scholar 

  • Naidu SL, Moose SP, Al-shoaibi AK, Raines CA, Long SP (2003) Cold Tolerance of C4 photosynthesis in Miscanthus × giganteus: adaptation in amounts and sequence of C4 photosynthetic enzymes. Plant Physiol 132:1688–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishizawa A, Yabuta Y, Shigeoka S (2008) Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol 147:1251–1263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogueira TS, De Rosa VE, Menossi M, Ulian C, Arruda P (2003) RNA expression profiles and data mining of sugarcane response to low temperature. Plant Physiol 132:1811–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto MDM, Friesen PC, Sage RF (2015) Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes. J Exp Bot 66:4415–4425

    Article  CAS  PubMed Central  Google Scholar 

  • Płażek A, Dubert F, Janowiak F, Krępski T, Tatrzańska M (2011) Plant age and in vitro or in vivo propagation considerably affect cold tolerance of Miscanthus × giganteus. Eur J Agron 34:163–171

    Article  Google Scholar 

  • Purdy SJ, Maddison AL, Jones LE, Webster RJ, Andralojc J, Donnison I, Clifton-Brown J (2013) Characterization of chilling-shock responses in four genotypes of Miscanthus reveals the superior tolerance of M. × giganteus compared with M. sinensis and M. sacchariflorus. Ann Bot 111:999–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raineri J, Ribichich KF, Chan RL (2015) The sunflower transcription factor HaWRKY76 confers drought and flood tolerance to Arabidopsis thaliana plants without yield penalty. Plant Cell Rep 34:2065–2080

    Article  CAS  PubMed  Google Scholar 

  • Robson PRH, Farrar K, Gay AP, Jensen EF, Clifton-Brown JC, Donnison IS (2013) Variation in canopy duration in the perennial biofuel crop Miscanthus reveals complex associations with yield. J Exp Bot 64:2373–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosser B (2012) Evaluation of miscanthus winter hardiness and yield potential in Ontario. Master thesis, University of Guelph

    Google Scholar 

  • Ruelland E, Vaultier MN, Zachowski A, Hurry V (2009) Cold signalling and cold acclimation in plants. Adv Bot Res 49:36–126

    Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, de Melo Peixoto M, Friesen P, Deen B (2015) C4 bioenergy crops for cool climates, with special emphasis on perennial C4 grasses. J Exp Bot 66:4195–4212

    Article  CAS  PubMed  Google Scholar 

  • Scebba F, Arduini I, Ercoli L, Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50:688–692

    Article  CAS  Google Scholar 

  • Spence AK (2012). Understanding the physiological and molecular basis of chilling tolerance accros species of the C4 genera Miscanthus and Spartina. Ph.D. dissertation, University of Illinois

    Google Scholar 

  • Spence AK, Boddu J, Wang D, James B, Swaminathan K, Moose SP, Long SP (2014) Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus × giganteus. J Exp Bot 65:3737–3747

    Article  PubMed  PubMed Central  Google Scholar 

  • Stewart JR, Toma Y, Fernández FG, Nishiwaki A, Yamada T, Bollero G (2009) The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1:126–153

    Article  Google Scholar 

  • Trudgill DL, Honek A, Li D, Straalen NM, Van Straalen NM (2005) Thermal time—concepts and utility. Ann Appl Biol 146:1–14

    Article  Google Scholar 

  • Valluru R, Van den Ende W (2008) Plant fructans in stress environments: emerging concepts and future prospects. J Exp Bot 59:2905–2916

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Naidu SL, Portis AR, Moose SP, Long SP (2008a) Can the cold tolerance of C4 photosynthesis in Miscanthus × giganteus relative to Zea mays be explained by differences in activities and thermal properties of Rubisco? J Exp Bot 59:1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Portis AR, Moose SP, Long SP (2008b) Cool C4 photosynthesis: pyruvate Pi dikinase expression and activity corresponds to the exceptional cold tolerance of carbon assimilation in Miscanthus × giganteus. Plant Physiol 148:557–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weng JH, Hsu FHF (2001) Gas exchange and epidermal characteristics of Miscanthus populations in Taiwan varying with habitats and nitrogen application. Photosynthetica 39:35–41

    Article  Google Scholar 

  • Weng JH, Ueng RG (1997) Effect of temperature on photosynthesis of Miscanthus clones collected from different elevations. Photosynthetica 34:307–311

    Article  Google Scholar 

  • Withers KK (2015) Morphological adaptations and membrane stabilizing mechanisms of overwintering miscanthus (Poaceae). Ph.D. dissertation, University of Guelph

    Google Scholar 

  • Yadav SK (2010) Cold stress tolerance mechanisms in plants. A review. Agron Sustain Dev 30:515–527

    Article  CAS  Google Scholar 

  • Yan W, Hunt L (1999) An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann Bot 84:607–614

    Article  Google Scholar 

  • Yan J, Chen W, Luo F, Ma H, Meng A, Li X, Zhu M, Li S, Zhou H, Zhu W, Han B, Ge S, Li J, Sang T (2011) Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4:49–60

    Article  Google Scholar 

  • Yu L, Chen X, Wang Z, Wang S, Wang Y, Zhu Q, Li S, Xiang C (2013a) Arabidopsis Enhanced Drought Tolerance1/HOMEODOMAIN GLABROUS11 confers drought tolerance in transgenic rice without yield penalty. Plant Physiol 162:1378–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Ding G, Huai Z, Zhao H (2013b) Natural variation of biomass yield and nutrient dynamics in Miscanthus. Field Crops Res 151:1–8

    Article  Google Scholar 

  • Zhao H, Wang B, He J, Yang J, Pan L, Sun D, Peng J (2013) Genetic diversity and population structure of Miscanthus sinensis germplasm in China. PLoS One 8, e75672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zub HW, Arnoult S, Brancourt-Hulmel M (2011) Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenergy 35:637–651

    Article  Google Scholar 

  • Zub HW, Arnoult S, Younous J, Lejeune-Hénaut I, Brancourt-Hulmel M (2012a) The frost tolerance of Miscanthus at the juvenile stage: differences between clones are influenced by leaf-stage and acclimation. Eur J Agron 36:32–40

    Article  Google Scholar 

  • Zub H, Rambaud C, Bethencourt L, Brancourt-Hulmel M (2012b) Late emergence and rapid growth maximize the plant development of Miscanthus clones. Bioenergy Res 5:841–854

    Article  Google Scholar 

Download references

Acknowledgments

The authors of this review were supported by the European Union’s seventh framework project OPTIMISC (grant agreement no° 289159).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Lootens .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fonteyne, S., Roldán-Ruiz, I., Muylle, H., De Swaef, T., Reheul, D., Lootens, P. (2016). A Review of Frost and Chilling Stress in Miscanthus and Its Importance to Biomass Yield. In: Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M. (eds) Perennial Biomass Crops for a Resource-Constrained World. Springer, Cham. https://doi.org/10.1007/978-3-319-44530-4_12

Download citation

Publish with us

Policies and ethics