Skip to main content

New Breeding Collections of Miscanthus sinensis, M. sacchariflorus and Hybrids from Primorsky Krai, Far Eastern Russia

  • Conference paper
  • First Online:
Perennial Biomass Crops for a Resource-Constrained World

Abstract

A greater range of germplasm is required to increase the genetic base of Miscanthus and to adapt it to a range of climates and soil types, including on marginal land. We undertook a major collecting expedition in Primorsky Krai in the Russian Far East to collect Miscanthus growing in a diverse range habitats. Miscanthus was found to be locally abundant, and a total of 361 genotypes were collected. Ten populations were sampled at high intensity and the remaining genotypes were spot sampled from a further 39 populations to maximize geographic and environmental range. Taxa were identified using morphology in the field and with subsequent stereomicroscopy where required. A total of 287 M. sacchariflorus and 70 M. sinensis plants were sampled. Potential hybrids have been identified using morphology and are currently being investigated further using molecular analysis including DNA sequencing and ploidy determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adati S, Shiotani I (1962) The cytotaxonomy of the genus Miscanthus and its phylogenetic status. Bulletin of the Faculty of Agriculture Mie University 25:1–24

    Google Scholar 

  • Allison GG, Morris C, Clifton-Brown JC, Lister SJ, Donnison IS (2011) Genotypic variation in cell wall composition in a diverse set of 244 accessions of Miscanthus. Biomass and Bioenergy 35:4740–4747

    Article  CAS  Google Scholar 

  • Anderson JA, Maan SS (1995) Interspecific nuclear-cytoplasmic compatibility controlled by genes on group 1 chromosomes in durum wheat. Genome 38:803–808

    Article  CAS  PubMed  Google Scholar 

  • Barney JN, Mann JJ, Kyser GB, DiTomaso JM (2012) Assessing habitat susceptibility and resistance to invasion by the bioenergy crops switchgrass and Miscanthus × giganteus in California. Biomass and Bioenergy 40:143–154

    Article  Google Scholar 

  • Cai X, Zhang X, Wang D (2011) Land availability for biofuel production. Environ Sci Technol 45:334–9

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Renvoize SA (2006) Miscanthus. Flora of China 22:581–583

    Google Scholar 

  • Clark LV, Brummer JE, Głowacka K, Hall M, Heo K, Long SP, Peng J, Yamada T, Yoo JH, Yu CY, Zhao H, Sacks EJ (2014) A footprint of past global climate change on the population genetic structure of Miscanthus sinensis. Ann Bot 114:97–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Clayton, WD, Vorontsova MS, Harman, KT, Williamson H (2006) GrassBase—The Online World Grass Flora. http://www.kew.org/data/grasses-db.html

  • Clifton-Brown JC, Jones MB (1997) The thermal response of leaf extension rate in genotypes of the C4-grass Miscanthus: an important factor in determining the potential productivity of different genotypes. J Exp Bot 48:1573–1581

    CAS  Google Scholar 

  • Clifton-Brown JC, Lewandowski I (2002) Screening Miscanthus genotypes in field trials to optimise biomass yield and quality in Southern Germany. Eur J Agron 16:97–110

    Article  Google Scholar 

  • Clifton-Brown JC, Chiang YC, Hodkinson TR (2008) Miscanthus genetic resources and breeding potential. In: Vermerris W (ed) Genetic improvement of bioenergy crops. Springer Science, New York, pp 273–290

    Google Scholar 

  • De Cesare M (2011). PhD Thesis. University of Dublin, Trinity College Dublin, Ireland

    Google Scholar 

  • De Cesare M, Hodkinson TR, Barth S (2010) Chloroplast DNA markers (cpSSRs, SNPs) for Miscanthus, Saccharum and related grasses (Panicoideae, Poaceae). Mol Breeding 26:539–544

    Article  CAS  Google Scholar 

  • Diekmann K, Hodkinson TR, Fricke E, Barth S (2008) An optimized chloroplast DNA extraction protocol for grasses (Poaceae) proves suitable for whole plastid genome sequencing and SNP detection. PLoS One 3(7), e2813

    Article  PubMed  PubMed Central  Google Scholar 

  • Donnelly A, Styles D, Fitzgerald J, Finnan J (2011) A proposed framework for determining the environmental impact of replacing agricultural grassland with Miscanthus in Ireland. GCB Bioenergy 3:247–263

    Article  Google Scholar 

  • Dwiyanti MS, Stewart JR, Nishiwaki A, Yamada T (2014) Natural variation in Miscanthus sinensis seed germination under low temperatures. Grassland Sci 60:194–198

    Google Scholar 

  • Farrell AD, Clifton-Brown JC, Lewandowski I, Jones MB (2006) Frost tolerance and thermal response of leaf growth in four Miscanthus genotypes. The impact of genotypic variation on potential yield. Ann Appl Biol 149:337–345

    Article  Google Scholar 

  • Gauder M, Graeff-Hönninger S, Lewandowski I, Claupein W (2012) Long-term yield and performance of 15 different Miscanthus genotypes in southwest Germany. Ann Appl Biol 160:126–136

    Article  Google Scholar 

  • Głowacka K, Adhikari S, Peng J, Gifford J, Juvik JA, Long SP, Sacks EJ (2014a) Variation in chilling tolerance for photosynthesis and leaf extension growth among genotypes related to the C4 grass Miscanthus × giganteus. J Exp Bot 65:5267–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Głowacka K, Clark LV, Adhikari S, Peng J, Stewart JR, Nishiwaki A, Yamada T, Jørgensen U, Hodkinson TR, Gifford J, Juvik JA, Sacks EJ (2014b) Genetic variation in Miscanthus × giganteus and the importance of estimating genetic distance thresholds for differentiating clones. GCB Bioenergy 7:386–404

    Article  Google Scholar 

  • Gopalakrishnan G, Cristina Negri M, Snyder SW (2013) A novel framework to classify marginal land for sustainable biomass feedstock production. J Environ Q 40:1593–600

    Article  Google Scholar 

  • Hodgson EM, Lister SJ, Bridgwater AV, Clifton-Brown JC, Donnison IS (2010) Genotypic and environmentally derived variation in the cell wall composition of Miscanthus in relation to its use as a biomass feedstock. Biomass and Bioenergy 34:652–660

    Article  CAS  Google Scholar 

  • Hodkinson TR, Renvoize SA (2001) Nomenclature of Miscanthus × giganteus (Poaceae). Kew Bulletin 56:759–760

    Article  Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA (1997) Systematics of Miscanthus. Asp Appl Biol 49:189–198

    Google Scholar 

  • Hodkinson TR, Chase MW, Renvoize SA (2001) Genetic resources of Miscanthus. Asp Appl Biol 65:239–248

    Google Scholar 

  • Hodkinson TR, Chase MW, Lledó D, Salamin N, Renvoize SA (2002a) Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA. J Plant Res 115:381–392

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson TR, Chase MW, Takahashi C, Leitch I, Bennett MD, Renvoize SA (2002b) The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot 89:279–286

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson TR, Renvoize SA, Chase MW (2002c) Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89:627–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodkinson TR, De Cesare M, Barth S (2013) Nuclear SSR markers for Miscanthus, Saccharum, and related grasses (Saccharinae, Poaceae). Appl Plant Sci 1:1300042

    Article  Google Scholar 

  • Hodkinson TR, Klaas M, Jones MB, Prickett R, Barth S (2015). Miscanthus: a case study for the utilization of natural genetic variation. Plant Genet Resour. 13:219–237

    Google Scholar 

  • Jensen E, Farrar K, Thomas-Jones S, Hastings A, Donnison I, Clifton-Brown J (2011) Characterization of flowering time diversity in Miscanthus species. GCB Bioenergy 3:387–400

    Article  Google Scholar 

  • Jeżowski S, Głowacka K, Kaczmarek Z (2011) Variation on biomass yield and morphological traits of energy grasses from the genus Miscanthus during the first years of crop establishment. Biomass and Bioenergy 35:814–821

    Article  Google Scholar 

  • Jones MB, Walsh M (2001) Miscanthus for energy and fibre. London: James and James Ltd, The Cromwell Press. pp 192

    Google Scholar 

  • Jones MB, Finnan J, Hodkinson TR (2014) Morphological and physiological traits for higher biomass production in perennial rhizomatous grasses grown on marginal land. GCB Bioenergy 7:375–385

    Article  Google Scholar 

  • Jørgensen U (1997) Genotypic variation in dry matter accumulation and content of N, K and Cl in Miscanthus in Denmark. Biomass and Bioenergy 12:155–169

    Article  Google Scholar 

  • Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3:24–30

    Article  Google Scholar 

  • Komarov VL, Rozhevits RY, Shishkin BK (1963) Flora of the USSR. The Botanical Institute of the Academy of Sciences of the USSR, Leningrad, USSR

    Google Scholar 

  • Koyama T (1987) Grasses of Japan and its neighboring regions: an identification manual. Kodansha, Ltd., Tokyo, p 370

    Google Scholar 

  • Lee YN (1964a) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 1. J Jpn Bot 39:196–205

    Google Scholar 

  • Lee YN (1964b) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 2. J Jpn Bot 39:257–265

    Google Scholar 

  • Lee YN (1964c) Taxonomic studies on the genus Miscanthus: relationships among the section, subsection and species, part 3. J Jpn Bot 39:289–298

    Google Scholar 

  • Linde-Laursen IB (1993) Cytogenetic analysis of MiscanthusGiganteus’, an interspecific hybrid. Hereditas 119:297–300

    Article  Google Scholar 

  • McGrath S, Hodkinson TR, Barth S (2007) Extremely high cytoplasmic diversity in natural and breeding populations of Lolium (Poaceae). Heredity 99:531–544

    Article  CAS  PubMed  Google Scholar 

  • Meyer MH, Paul J, Anderson NO (2010) Competitive ability of invasive Miscanthus biotypes with aggressive switchgrass. Biol Invas 12:3809–3816

    Article  Google Scholar 

  • Nielsen PN (1990) Elefantengrassanbau in Danemark—Praktikerbericht. Pflug und Spaten 3:1–4

    CAS  Google Scholar 

  • Nijsen M, Smeets E, Stehfest E, Vuuren DP (2012) An evaluation of the global potential of bioenergy production on degraded lands. GCB Bioenergy 4:130–147

    Article  Google Scholar 

  • Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR (2011) Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154–9

    Article  PubMed  Google Scholar 

  • Osada T (1993) Illustrated grasses of Japan. Heibonsia Ltd., Tokyo, pp 158–205

    Google Scholar 

  • Quinn LD, Allen DJ, Stewart JR (2010) Invasiveness potential of Miscanthus sinensis: implications for bioenergy production in the United States. GCB Bioenergy 2:310–320

    Article  Google Scholar 

  • Robson P, Mos M, Clifton-Brown JC, Donnison IS (2011) Phenotypic variation in senescence in Miscanthus: towards optimising biomass quality and quantity. Bioenergy Res 5:95–105

    Article  Google Scholar 

  • Salamin N, Hodkinson TR, Savolainen V (2001) Towards building the tree of life: a simulation study for all angiosperm genera. Syst Biol 54:183–196

    Article  Google Scholar 

  • Sang T, Zhu W (2011) China’s bioenergy potential. GCB Bioenergy 3:79–90

    Article  Google Scholar 

  • Scally L, Hodkinson TR, Jones MB (2001a) Origins and taxonomy of Miscanthus. In: Jones MB, Walsh M (eds) Miscanthus for energy and fibre. The Cromwell Press, London, UK, James and James Ltd, pp 1–9

    Google Scholar 

  • Scally L, Waldren S, Hodkinson TR, Jones MB (2001b) Morphological and molecular systematics of the genus Miscanthus. Asp Appl Biol 65:231–237

    Google Scholar 

  • Slavov GT, Nipper R, Robson P, Farrar K, Allison GG, Bosch M, Clifton-Brown JC, Donnison IS, Jensen E (2014) Genome-wide association studies and prediction of 17 traits related to phenology, biomass and cell wall composition in the energy grass Miscanthus sinensis. New Phytologist 201:1227–39

    Article  CAS  PubMed  Google Scholar 

  • Sun Q, Lin, Q, Yi Z-L, Yang Z- R, Zhou F-S (2010) A taxonomic revision of Miscanthus s.l. (Poaceae) from China. Bot J Linnean Soc 164:178–220

    Google Scholar 

  • Swaminathan K, Alabady MS, Varala K, De Paoli E, Ho I, Rokhsar DS, Arumuganathan AK, Ming R, Green PJ, Meyers BC, Moose SP, Hudson ME (2010) Genomic and small RNA sequencing of Miscanthus x giganteus shows the utility of sorghum as a reference genome sequence for Andropogoneae grasses. Genome Biology 11: R12

    Google Scholar 

  • Zhang T, Wyman CE, Jakob K, Yang B (2012) Rapid selection and identification of Miscanthus genotypes with enhanced glucan and xylan yields from hydrothermal pretreatment followed by enzymatic hydrolysis. Biotechnol Biofuels 5:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Li Q, He J, Yu J, Yang J, Liu C, Peng J (2013) Genotypic variation of cell wall composition and its conversion efficiency in Miscanthus sinensis, a potential biomass feedstock crop in China. GCB Bioenergy 6:768–776

    Article  Google Scholar 

  • Zhao H, Huai Z, Xiao Y, Wang X, Yu J, Ding G, Peng J (2014) Natural variation and genetic analysis of tiller angle gene MsTAC1 in Miscanthus sinensis. Planta 240:161–175

    Article  CAS  PubMed  Google Scholar 

  • Zub HW, Brancourt-Hulmel M (2010) Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron Sustain Dev 30:201–214

    Article  Google Scholar 

  • Zub HW, Arnoult S, Younous J, Lejeune-Hénaut I, Brancourt-Hulmel M (2012) The frost tolerance of Miscanthus at the juvenile stage: differences between clones are influenced by leaf-stage and acclimation. Eur J Agron 36:32–40

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr Maria Vorontsova at the Royal Botanic Gardens, Kew, UK, for help with setting up the research collaboration between Ireland and Vladivostok Botanic Garden, Russia. Thanks also to Ruby Prickett for proving some collection locality data. This work was supported by European Framework Programme 7, grant number 289461 (GrassMargins).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Hodkinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Hodkinson, T.R. et al. (2016). New Breeding Collections of Miscanthus sinensis, M. sacchariflorus and Hybrids from Primorsky Krai, Far Eastern Russia. In: Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M. (eds) Perennial Biomass Crops for a Resource-Constrained World. Springer, Cham. https://doi.org/10.1007/978-3-319-44530-4_10

Download citation

Publish with us

Policies and ethics