Skip to main content

The Role of Perennial Biomass Crops in a Growing Bioeconomy

  • Conference paper
  • First Online:

Abstract

The growth of a European bioeconomy will require an increased supply of sustainably produced biomass. The aim of this chapter is to discuss how perennial biomass crops (PBC) can contribute to the sustainable intensification of agriculture and the sustainable supply of biomass in Europe.

PBC produce high yields with low inputs and can be cultivated on marginal land. However, less than 50,000 ha (ha) of PBC are presently grown in the EU. The reasons include:

  1. 1.

    Biomass production costs are still too high;

  2. 2.

    There is a lack of stable markets for PBC biomass and the biomass is used for low-value applications; and

  3. 3.

    Farmers’ interest and acceptance is low.

These challenges can be overcome by the development of (among others) efficient and stress-tolerant PBC cultivars, efficient and low-cost crop management and agricultural technologies, and high-value applications for lignocellulosic biomass.

Significant potential for the production PBC in the EU is seen in the use of marginal or contaminated land. These soils can even be ameliorated by PBC. Other opportunities include the integration of PBC into farming systems. This can help farmers make better use of land that is less suitable for food production and at the same time improve its ecological performance by, for example, reducing nitrate leaching or erosion. There is also considerable potential for PBC to replace less sustainably produced biomass. An example of this is miscanthus, which can replace maize as a biogas substrate. These opportunities should be accompanied by the development of high-value applications and the on-farm biorefining of PCB biomass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Pretty et al. (2011) defined sustainable agricultural intensification as follows: “producing more output from the same area of land while reducing the negative environmental impacts and at the same time increasing contributions to natural capital and the flow of environmental services.”

References

  • Allen B, Kretschmer B, Baldock D, Menadue H, Nanni S, Tucker G (2014) Space for energy crops—assessing the potential contribution to Europe’s energy future. Report produced for BirdLife Europe, European Environmental Bureau and Transport & Environment. IEEP, London

    Google Scholar 

  • Dornburg V, van Vuuren D, van de Ven G et al. (2010) Bioenergy revisited: Key factors in global potentials of bioenergy. Energy & Environmental Science, 3:258–267

    Google Scholar 

  • Fargione J, Hill J, Tilamn D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon dept. Science 319:1235–1238

    Article  CAS  PubMed  Google Scholar 

  • Lado LR, Hengl T, Reuter HI (2008) Heavy metals in European soils: a geostatistical analysis of the FOREGS geochemical database. Geoderma 148(2008):189–199

    Article  CAS  Google Scholar 

  • Lewandowski I (2015) Securing a sustainable biomass supply in a growing bioeconomy. Global Food Security 6:34–42

    Article  Google Scholar 

  • Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function. Agr Syst 89(1):68–89

    Article  Google Scholar 

  • Lewandowski I, Kalinina O, Kiesel A, Clifton-Brown J et al (2015) OPTIMISC—developing Miscanthus production systems for marginal lands. European Biomass Conference and Exhibition Proceedings, Vienna 2015, 6–8

    Google Scholar 

  • McCalmont JP, Hastings A, McNamara NP, Richter GM, Robson P, Donnison IS, Clifton-Brown J (2015) Environmental costs and benefits of growing Miscanthus for bioenergy in the UK. GCB-Bioenergy. doi: 10.1111/gcbb.12294

    Google Scholar 

  • Pretty J, Toulmin C, Williams S (2011) Sustainable intensification in African agriculture. Int J Agric Sustain 9(1):5–24

    Article  Google Scholar 

  • Pogrzeba M, Krzyżak J, Sas-Nowosielska A, Majtkowski W, Małkowski E, Kita A (2011) A heavy metal environmental threat resulting from combustion of biofuels of plant origin. In: L.I. Simeonov, et al. (Eds.) Environmental Heavy Metal Pollution And Effects On Child Mental Development: Risk Assessment And Prevention Strategies, Springer Science+Business Media B.V., 213–225

    Google Scholar 

  • Pogrzeba M, Krzyżak J, Sas-Nowosielska A (2013) Environmental hazards related to Miscanthus x giganteus cultivation on heavy metal contaminated soil. E3S Web of Conferences 1, 29006

    Google Scholar 

  • Scarlat N, Dallemand JF, Monforti-Ferario F, Nita V (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34

    Article  Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  PubMed  Google Scholar 

  • Staffas L, Gustavsson M, McCormick K (2013) Strategies and policies for the bioeconomy and bio-Based economy: an analysis of official national approaches. Sustainability, 5:2751–2769

    Google Scholar 

  • van Dam JEG, de Klerk-Engels B, Struik PC, Rabbinge R (2005) Securing renewable resource supplies for changing market demands in a bio-based economy. Ind Crop Prod 21(1):129–144

    Article  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Lewandowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lewandowski, I. (2016). The Role of Perennial Biomass Crops in a Growing Bioeconomy. In: Barth, S., Murphy-Bokern, D., Kalinina, O., Taylor, G., Jones, M. (eds) Perennial Biomass Crops for a Resource-Constrained World. Springer, Cham. https://doi.org/10.1007/978-3-319-44530-4_1

Download citation

Publish with us

Policies and ethics