Skip to main content

On the Security and Key Generation of the ZHFE Encryption Scheme

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9836))

Abstract

At PQCrypto’14 Porras, Baena and Ding proposed a new interesting construction to overcome the security weakness of the HFE encryption scheme, and called their new encryption scheme ZHFE. They provided experimental evidence for the security of ZHFE, and proposed the parameter set \((q,n,D)= (7,55,105)\) with claimed security level \(2^{80}\) estimated by experiment. However there is an important gap in the state-of-the-art cryptanalysis of ZHFE, i.e., a sound theoretical estimation for the security level of ZHFE is missing. In this paper we fill in this gap by computing upper bounds for the Q-Rank and for the degree of regularity of ZHFE in terms of \(\log _q D\), and thus providing such a theoretical estimation. For instance the security level of ZHFE(7,55,105) can now be estimated theoretically as at least \(2^{96}\). Moreover for the inefficient key generation of ZHFE, we also provide a solution to improve it significantly, making almost no computation needed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baena, J.B., Cabarcas, D., Escudero, D.E., Porras-Barrera, J., Verbel, J.A.: Efficient ZHFE key generation. In: Takagi, T., et al. (eds.) PQCrypto 2016. LNCS, vol. 9606, pp. 213–232. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29360-8_14

    Chapter  Google Scholar 

  2. Bettale, L., Faugère, J.C., Perret, L.: Cryptanalysis of HFE, multi-HFE and variants for odd and even characteristic. Des. Codes Cryptogr. 69(1), 1–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Courtois, N.T., Klimov, A.B., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, p. 392. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Courtois, N.T.: The security of hidden field equations (HFE). In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, p. 266. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Dubois, V., Gama, N.: The degree of regularityof HFE systems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 557–576. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate public key cryptosystems. In: Advances in Information Security, vol. 25. Springer (2006)

    Google Scholar 

  7. Ding, J., Hodges, T.J.: Inverting HFE systems is quasi-polynomial for all fields. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 724–742. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Ding, J., Yang, B.-Y.: Degree of regularity for HFEv and HFEv-. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 52–66. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  9. Faugére, J.-C.: A new efficient algorithm for computing Gröbner bases (\(F_4\)). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Faugére, J.-C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (\(F_5\)). In: ISSAC 2002 Proceedings of the International Symposium on Symbolic and Algebraic Computation, pp. 75–83. ACM, New York (2002)

    Google Scholar 

  11. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE) cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–60. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, W. H (1979)

    MATH  Google Scholar 

  13. Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, p. 19. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  16. Porras, J., Baena, J., Ding, J.: New candidates for multivariate trapdoor functions. Cryptology ePrint Archive, Report 2014/387 (2014). http://eprint.iacr.org/2014/387

  17. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245. Springer, Heidelberg (2014)

    Google Scholar 

  18. Patarin, J., Courtois, N.T., Goubin, L.: QUARTZ, 128-bit long digital signatures. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, p. 282. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6_14

    Chapter  Google Scholar 

  20. Perlner, R., Smith-Tone, D.: Security analysis and key modification for ZHFE. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 197–212. Springer, Heidelberg (2016). doi:10.1007/978-3-319-29360-8_13

    Chapter  Google Scholar 

  21. Wolf, C., Preneel, B.: Equivalent keys in HFE, C\(^{*}\), and variations. In: Dawson, E., Vaudenay, S. (eds.) Mycrypt 2005. LNCS, vol. 3715, pp. 33–49. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the anonymous reviewers of PQCrypto’16 for their valuable comments on an early version of this paper, and the anonymous reviewers of IWSEC’16 for their helpful comments on this paper.The first author would like to thank the financial support from the National Natural Science Foundation of China (Grant No. 61572189).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, W., Tan, C.H. (2016). On the Security and Key Generation of the ZHFE Encryption Scheme. In: Ogawa, K., Yoshioka, K. (eds) Advances in Information and Computer Security. IWSEC 2016. Lecture Notes in Computer Science(), vol 9836. Springer, Cham. https://doi.org/10.1007/978-3-319-44524-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44524-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44523-6

  • Online ISBN: 978-3-319-44524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics