Skip to main content

Anti-concentration Inequalities for Polynomials

  • Chapter
  • First Online:
A Journey Through Discrete Mathematics
  • 2257 Accesses

Abstract

In this short survey, we discuss the notion of anti-concentration and describe various ideas used to obtain anti-concentration inequalities, together with several open questions.

In memory of Jirka Matoušek

V. Vu is supported by NSF grant DMS-1307797 and AFORS grant FA9550-12-1-0083.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. A. Carbery, J. Wright, Distributional and L q norm inequalities for polynomials over convex bodies in R n. Math. Res. Lett. 8(3), 233–248 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Costello, Bilinear and quadratic variants on the Littlewood-Offord problem. Israel J. Math. 194.1, 359–394 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Costello, T. Tao, V. Vu, Random symmetric matrices are almost surely nonsingular. Duke Math. J. 135.2, 395–413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Diakonikolas, R. Servedio, L. Tan, A. Wan, A regularity lemma, and low-weight approximators, for low-degree polynomial threshold functions, in 2010 IEEE 25th Annual Conference on Computational Complexity (CCC) (2010), pp. 211–222

    Google Scholar 

  5. P. Erdös, On a lemma of Littlewood and Offord. Bull. Am. Math. Soc. 51.12, 898–902 (1945)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Esséen, On the Kolmogorov-Rogozin inequality for the concentration function. Z. Wahrsch. Verw. Gebiete 5, 210–216 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Halász, Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hungar. 8(3–4), 197–211 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. D. Kane, The Correct Exponent for the Gotsman-Linial Conjecture, in 2013 IEEE 28th Conference on Computational Complexity (CCC) (IEEE, 2013), pp. 56–64

    Google Scholar 

  9. D. Kane, A pseudorandom generator for polynomial threshold functions of gaussian with subpolynomial seed length, in 2014 IEEE 29th Conference on Computational Complexity (CCC) (IEEE, 2014), pp. 217–228

    Google Scholar 

  10. M. Ledoux, The Concentration of Measure Phenomenon. Volume 89 of Mathematical Surveys and Mono-graphs. (American Mathematical Society, 2001)

    Google Scholar 

  11. J.W. Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung. Math. Z. 15, 211–225 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.E. Littlewood, A.C. Offord, On the number of real roots of a random algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S. 54, 277–286 (1943)

    Google Scholar 

  13. R. Meka, O. Nguyen, V. Vu, Anti-concentration for polynomials of independent random variables. Theory of Comput. 12(11), 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. E. Mossel, R. O’Donnell, K. Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality. Ann. Math. 171(1), 295–341 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. H. Nguyen, Inverse Littlewood-Offord problems and the singularity of random symmetric matrices. Duke Math. J. 161(4), 545–586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Nguyen, V. Vu, Small Ball Probability, Inverse Theorems, and Applications, Erdös Centennial (Springer, Berlin/Heidelberg, 2013), pp. 409–463

    Google Scholar 

  17. A. Razborov, E. Viola, Real advantage. ACM Trans. Comput. Theory (TOCT) 5(4), 17 (2013)

    Google Scholar 

  18. M. Rudelson, R. Vershynin, Non-asymptotic theory of random matrices: extremal singular values, in Proceeding of the International Congress of Mathematicians, vol. III (Hindustan Book Agency, New Delhi, 2010), pp. 1576–1602

    Google Scholar 

  19. T. Tao, V. Vu, From the Littlewood-Offord problem to the circular law: universality of the spectral distribution of random matrices. Bull. Am. Math. Soc. (N.S.) 46(3), 377–396 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van Vu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International publishing AG

About this chapter

Cite this chapter

Vu, V. (2017). Anti-concentration Inequalities for Polynomials. In: Loebl, M., Nešetřil, J., Thomas, R. (eds) A Journey Through Discrete Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-44479-6_32

Download citation

Publish with us

Policies and ethics