Skip to main content

Crossing-Free Perfect Matchings in Wheel Point Sets

  • Chapter
  • First Online:
A Journey Through Discrete Mathematics

Abstract

Consider a planar finite point set P, no three points on a line and exactly one point not extreme in P. We call this a wheel set and we are interested in pm(P), the number of crossing-free perfect matchings on P. (If, contrary to our assumption, all points in a set S are extreme, i.e. in convex position, then it is well-known that pm(S) = C m , the mth Catalan number, \(m:= \frac{\vert S\vert } {2}\).)

We give exact tight upper and lower bounds on pm(P) depending on the cardinality of the wheel set P. Simplified to its asymptotics in terms of C m , these yield

$$\displaystyle{ \frac{9} {8}C_{m}(1 + o(1)) \leq \mathsf{pm}(P) \leq \frac{3} {2}C_{m}(1 + o(1))\,m:= \frac{\vert P\vert } {2}. }$$

We characterize the wheel sets (order types) which maximize or minimize pm(P). Moreover, among all sets S of a given size not in convex position, pm(S) is minimized for some wheel set. Therefore, leaving convex position increases the number of crossing-free perfect matchings by at least a factor of \(\frac{9} {8}\) (in the limit as | S | grows). We can also show that pm(P) can be computed efficiently.

A connection to origin embracing triangles is briefly discussed.

This research was initiated at the 13th Gremo’s Workshop on Open Problems (GWOP), Feldis, Switzerland, June 1–5, 2015. Research of the first author was partially supported by Swiss National Science Foundation grants 200021-137574 and 200020-144531. The second author acknowledges financial support from EuroCores/EuroGiga/ComPoSe, Swiss National Science Foundation grant 20GG21 134318/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    We acknowledge the use of Maple for these straightforward but tedious calculations.

  2. 2.

    Descartes’s Sign Rule: The number of positive real roots of a real polynomial is at most the number of sign changes of the coefficients, as read from largest to smallest power (ignoring zero-coefficients). In our polynomial, there is only one sign change, from 4x 3 to − x 2.

  3. 3.

    We choose this cone closed, since we want p and q in Z , and later p and q in Z.

  4. 4.

    Assuming constant time for arithmetic operations!

References

  1. A.K. Abu-Affash, A. Biniaz, P. Carmi, A. Maheshwari, M.H.M. Smid, Approximating the bottleneck plane perfect matching of a point set. Comput. Geom. 48(9), 718–731 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. O. Aichholzer, F. Aurenhammer, H. Krasser, Enumerating order types for small point sets with applications. Order 19(3), 265–281 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Aichholzer, S. Bereg, A. Dumitrescu, A. García Olaverri, C. Huemer, F. Hurtado, M. Kano, A. Márquez, D. Rappaport, S. Smorodinsky, D.L. Souvaine, J. Urrutia, D.R. Wood, Compatible geometric matchings. Comput. Geom. 42(6–7), 617–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Aloupis, L. Barba, S. Langerman, D.L. Souvaine, Bichromatic compatible matchings. Comput. Geom. 48(8), 622–633 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Aloupis, J. Cardinal, S. Collette, E.D. Demaine, M.L. Demaine, M. Dulieu, R.F. Monroy, V. Hart, F. Hurtado, S. Langerman, M. Saumell, C. Seara, P. Taslakian, Non-crossing matchings of points with geometric objects. Comput. Geom. 46(1), 78–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Andrzejak, B. Aronov, S. Har-Peled, R. Seidel, E. Welzl, Results on k-sets and j-facets via continuous motion, in Proceedings of the 14th Annual Symposium on Computational Geometry (SoCG’98), ed. by R. Janardan (ACM, 1998), pp. 192–199

    Google Scholar 

  7. A. Asinowski, The number of non-crossing perfect plane matchings is minimized (almost) only by point sets in convex position. CoRR abs/1502.05332 (2015)

    Google Scholar 

  8. A. Asinowski, G. Rote, Point sets with many non-crossing matchings. CoRR abs/1502.04925 (2015)

    Google Scholar 

  9. A. Biniaz, P. Bose, A. Maheshwari, M.H.M. Smid, Packing plane perfect matchings into a point set. CoRR abs/1501.03686 (2015)

    Google Scholar 

  10. A. Elmasry, K.M. Elbassioni, Output-sensitive algorithms for enumerating and counting simplices containing a given point in the plane, in Proceedings of the 17th Canadian Conference on Computational Geometry (CCCG’05), (2005), pp. 248–251

    Google Scholar 

  11. P. Erdős, L. Lovász, A. Simmons, E.G. Straus, Dissection graphs of planar point sets, in A Survey of Combinatorial Theory (Proceedings of the International Symposium, Colorado State University, Fort Collins, 1971), (1973), pp. 139–149

    Google Scholar 

  12. A. García Olaverri, M. Noy, J. Tejel, Lower bounds on the number of crossing-free subgraphs of K N . Comput. Geom. 16(4), 211–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.E. Goodman, R. Pollack, Multidimensional sorting. SIAM J. Comput. 12(3), 484–507 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Holmsen, J. Pach, H. Tverberg, Points surrounding the origin. Combinatorica 28(6), 633–644 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.E. Houle, F. Hurtado, M. Noy, E. Rivera-Campo, Graphs of triangulations and perfect matchings. Graphs and Combinatorics 21(3), 325–331 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Khuller, J.S.B. Mitchell, On a triangle counting problem. Inf. Process. Lett. 33(6), 319–321 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Marx, T. Miltzow, Peeling and nibbling the cactus: Subexponential-time algorithms for counting triangulations and related problems. CoRR abs/1603.07340 (2016)

    Google Scholar 

  18. T.S. Motzkin, Relations between hypersurface cross ratios, and a combinatorial formula for partitions of a polygon, for permanent preponderance, and for non-associative products. Bull. Am. Math. Soc. 54(4), 352–360 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Pach, M. Szegedy, The number of simplices embracing the origin, in Discrete Geometry: In Honor of W. Kuperberg’s 60th Birthday. Pure and Applied Mathematics, ed. by A. Bezdek (Marcel Dekker Inc., New York, 2003), pp. 381–386

    Google Scholar 

  20. A. Pilz, E. Welzl, Order on order types, in Proceedings of the 31st Annual Symposium on Computational Geometry (SoCG’15), ed. by L. Arge, J. Pach. Volume 34 of LIPIcs (Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015), pp. 285–299

    Google Scholar 

  21. A. Pilz, E. Welzl, M. Wettstein, From crossing-free graphs on wheel sets to embracing simplices and polytopes with few vertices, in Proceedings of 33rd International Symposium on Computational Geometry (SoCG) (2017, to appear)

    Google Scholar 

  22. D. Randall, G. Rote, F. Santos, J. Snoeyink, Counting triangulations and pseudo-triangulations of wheels, in Proceedings of the 13th Canadian Conference on Computational Geometry (CCCG’01) (2001), pp. 149–152

    Google Scholar 

  23. M. Sharir, A. Sheffer, E. Welzl, Counting plane graphs: perfect matchings, spanning cycles, and Kasteleyn’s technique. J. Comb. Theory Ser. A 120(4), 777–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Sharir, E. Welzl, On the number of crossing-free matchings, cycles, and partitions. SIAM J. Comput. 36(3), 695–720 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. R.P. Stanley, Catalan Numbers (Cambridge University Press, New York, 2015)

    Book  MATH  Google Scholar 

  26. H.A. Tverberg, A generalization of Radon’s theorem. J. Lond. Math. Soc. 41(1), 123–128 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. van Leeuwen, A.A. Schoone, Untangling a travelling salesman tour in the plane, in Proceedings of the Graph Theoretic Concepts in Computer Science (WG’81), ed. by J.R. Mühlbacher (Hanser Verlag, München, 1981), pp. 87–98. Also Technical report RUU-CS-80-11, Departments of Computer Science, Utrecht University, 1980

    Google Scholar 

  28. U. Wagner, E. Welzl, A continuous analogue of the upper bound theorem. Discret. Comput. Geom. 26(2), 205–219 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. E. Welzl, Entering and leaving j-facets. Discret. Comput. Geom. 25(3), 351–364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. M. Wettstein, Counting and enumerating crossing-free geometric graphs, in Proceedings of the 30th Annual Symposium on Computational Geometry (SOCG’14), ed. by S.-W. Cheng, O. Devillers (ACM, 2014), pp. 1–10

    Google Scholar 

  31. G.M. Ziegler, Lectures on Polytopes (Springer, Berlin, 1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Vera Rosta, Patrick Schnider, Shakhar Smorodinsky, Antonis Thomas, and Manuel Wettstein for discussions on and suggestions for the material covered in this paper. We also thank the three referees for carefully reading through the paper with numerous suggestions for improvements. (And thanks to Maple, for sparing us some tedious calculations.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emo Welzl .

Editor information

Editors and Affiliations

Appendix: Catalan Facts

Appendix: Catalan Facts

Fact A.1 (Definition & Asymptotics)

For all \(m \in \mathbb{N}_{0}\),

$$\displaystyle{ C_{m}:= \frac{1} {m + 1}{2m\choose m} = \frac{(2m)!} {(m + 1)!m!} = \Theta \left ( \frac{1} {m^{3/2}}4^{m}\right )\ . }$$

Fact A.2 (Simple Recurrence)

For all \(m \in \mathbb{N}_{0}\) ,

$$\displaystyle{ 2 \cdot \frac{2m - 1} {m + 1} \cdot C_{m-1} = C_{m} = \frac{1} {2} \cdot \frac{m + 2} {2m + 1} \cdot C_{m+1}\ . }$$

Fact A.3 (Segner Recurrence)

For all \(m \in \mathbb{N}\) ,

$$\displaystyle{ C_{m} = C_{0}C_{m-1} + C_{1}C_{m-2} + \cdots \,C_{m-1}C_{0} =\sum _{ i=0}^{m-1}C_{ i}C_{m-1-i}. }$$

Fact A.4

For \(k,\ell\in \mathbb{N}\) ,

$$\displaystyle{ C_{k}C_{\ell} < C_{k-1}C_{\ell+1}\mathit{\mbox{ iff }}k \leq \ell }$$

Proof

$$\displaystyle{ C_{k}C_{\ell} = 2\frac{2k - 1} {k + 1} C_{k-1} \cdot \frac{1} {2} \frac{\ell+2} {2\ell + 1}C_{\ell+1} = \frac{(2k - 1)(\ell+2)} {(k + 1)(2\ell + 1)}C_{k-1}C_{\ell+1} }$$

and

$$\displaystyle\begin{array}{rcl} \frac{(2k - 1)(\ell+2)} {(k + 1)(2\ell + 1)}& <& 1 {}\\ \Leftrightarrow \ \ \ \ 3k - 3& <& 3\ell {}\\ \Leftrightarrow \ \ \ \ k& \leq & \ell\text{ since }k\text{ and }\ell\text{ are integers.} {}\\ \end{array}$$

Fact A.5

For \(m \in \mathbb{N}\) ,

$$\displaystyle{ (2m - 1)\left (2C_{m-1} -\frac{1} {2}C_{m}\right ) = \frac{3} {2}C_{m} }$$

Proof

Employ Fact A.2 for expressing C m−1 in terms of C m .

$$\displaystyle\begin{array}{rcl} (2m - 1)\left (2C_{m-1} -\frac{1} {2}C_{m}\right )& =& (2m - 1)\left (2\left (\frac{1} {2} \frac{m + 1} {2m - 1}C_{m}\right ) -\frac{1} {2}C_{m}\right ) {}\\ & =& (2m - 1)\left (\frac{2(m + 1) - (2m - 1)} {2(2m - 1)} \right )C_{m} {}\\ & =& \frac{3} {2}C_{m} {}\\ \end{array}$$

Fact A.6

For \(k,\ell\in \mathbb{N}\) ,

$$\displaystyle{ \frac{2k - 1} {2k} \frac{C_{k-1}} {C_{k}} < \frac{C_{\ell-1}} {C_{\ell}} \mathit{\mbox{ iff }}2\ell - 1 < 3k }$$

Proof

$$\displaystyle\begin{array}{rcl} \frac{2k - 1} {2k} \frac{C_{k-1}} {C_{k}} & <& \frac{C_{\ell-1}} {C_{\ell}} {}\\ \Leftrightarrow \ \ \ \ \frac{2k - 1} {2k} \frac{k + 1} {2(2k - 1)}& <& \frac{\ell+1} {2(2\ell - 1)}\mbox{ due to Fact A.2} {}\\ \Leftrightarrow \ \ \ \ 2\ell - 1& <& 3k {}\\ \end{array}$$

Fact A.7

For all \(m \in \mathbb{N}\) , m ≥ 2,

$$\displaystyle{ C_{m} + C_{m-1} - 2C_{m-2} = \frac{9} {8}C_{m}\left (1 + \Theta (1/m^{2})\right )\ . }$$

Proof

$$\displaystyle\begin{array}{rcl} C_{m} + C_{m-1} - 2C_{m-2}& =& C_{m} + \frac{1} {2} \frac{m + 1} {2m - 1}C_{m} - 2(\frac{1} {2} \frac{m + 1} {2m - 1} \cdot \frac{1} {2} \frac{m} {2m - 3})C_{m} {}\\ & =& C_{m}\,\left (\frac{9m^{2} - 18m + 3} {8m^{2} - 16m + 6}\right ) {}\\ & =& \frac{9} {8}C_{m}\left (1 - \frac{5} {3(4m^{2} - 8m + 3)}\right ) {}\\ & =& \frac{9} {8}C_{m}\,(1 + \Theta (1/m^{2})) {}\\ \end{array}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International publishing AG

About this chapter

Cite this chapter

Ruiz-Vargas, A.J., Welzl, E. (2017). Crossing-Free Perfect Matchings in Wheel Point Sets. In: Loebl, M., Nešetřil, J., Thomas, R. (eds) A Journey Through Discrete Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-44479-6_30

Download citation

Publish with us

Policies and ethics