Skip to main content

Restricted Invertibility Revisited

  • Chapter
  • First Online:
A Journey Through Discrete Mathematics

Abstract

Suppose that \(m,n \in \mathbb{N}\) and that \(A: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}\) is a linear operator. It is shown here that if \(k,r \in \mathbb{N}\) satisfy \(k <r\leqslant \mathbf{rank}(A)\) then there exists a subset σ ⊆ {1, , m} with | σ | = k such that the restriction of A to \(\mathbb{R}^{\sigma } \subseteq \mathbb{R}^{m}\) is invertible, and moreover the operator norm of the inverse \(A^{-1}: A(\mathbb{R}^{\sigma }) \rightarrow \mathbb{R}^{m}\) is at most a constant multiple of the quantity \(\sqrt{mr/((r - k)\sum _{i=r }^{m }\mathsf{s } _{i } (A)^{2 } )}\), where \(\mathsf{s}_{1}(A)\geqslant \ldots \geqslant \mathsf{s}_{m}(A)\) are the singular values of A. This improves over a series of works, starting from the seminal Bourgain–Tzafriri Restricted Invertibility Principle, through the works of Vershynin, Spielman–Srivastava and Marcus–Spielman–Srivastava. In particular, this directly implies an improved restricted invertibility principle in terms of Schatten–von Neumann norms.

Dedicated to Jirka Matoušek

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    A. N. was supported by BSF grant 2010021, the Packard Foundation and the Simons Foundation.

  2. 2.

    Comparing (7) and (9) we see that F j = E ω∖{j} for every jω.

References

  1. R. P. Anstee, L. Rónyai, A. Sali, Shattering news. Graphs Combin. 18(1), 59–73 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Batson, D. A. Spielman, N. Srivastava, Twice-Ramanujan sparsifiers. SIAM J. Comput. 41(6), 1704–1721 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Berman, H. Halpern, V. Kaftal, G. Weiss, Matrix norm inequalities and the relative Dixmier property. Integr. Equ. Oper. Theory 11(1), 28–48 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bhatia, in Matrix Analysis. Graduate Texts in Mathematics, vol. 169 (Springer, New York, 1997). ISBN:0-387-94846-5. doi:10.1007/ 978-1-4612-0653-8

    Google Scholar 

  5. J. Bourgain, L. Tzafriri, Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis. Isr. J. Math. 57(2), 137–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, L. Tzafriri, On a problem of Kadison and Singer. J. Reine Angew. Math. 420, 1–43 (1991)

    MathSciNet  MATH  Google Scholar 

  7. J. Bourgain, S. J. Szarek, The Banach-Mazur distance to the cube and the Dvoretzky–Rogers factorization. Isr. J. Math. 62(2), 169–180 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Bourgain, L. Tzafriri, Restricted invertibility of matrices and applications, in Analysis at Urbana, Volume II, Urbana, 1986–1987. London Mathematical Society Lecture Note Series, vol. 138 (Cambridge University Press, Cambridge, 1989), pp. 61–107

    Google Scholar 

  9. P. J. Davis, in Circulant Matrices. Pure and Applied Mathematics (Wiley, New York/Chichester/Brisbane, 1979). ISBN:0-471-05771-1. A Wiley-Interscience Publication

    Google Scholar 

  10. J. Diestel, H. Jarchow, A. Tonge, in Absolutely Summing Operators. Cambridge Studies in Advanced Mathematics, vol. 43 (Cambridge University Press, Cambridge, 1995). ISBN:0-521-43168-9. doi:10.1017/ CBO9780511526138

    Google Scholar 

  11. K. Fan, On a theorem of Weyl concerning eigenvalues of linear transformations. I. Proc. Natl. Acad. Sci. U. S. A. 35, 652–655 (1949)

    Article  MathSciNet  Google Scholar 

  12. A.A. Giannopoulos, A note on the Banach–Mazur distance to the cube, in Geometric Aspects of Functional Analysis, Israel, 1992–1994. Operator Theory: Advances and Applications, vol. 77 (Birkhäuser, Basel, 1995), pp. 67–73

    Google Scholar 

  13. A. A. Giannopoulos, A proportional Dvoretzky-Rogers factorization result. Proc. Am. Math. Soc. 124(1), 233–241 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques. Bol. Soc. Mat. São Paulo 8, 1–79 (1953)

    MathSciNet  Google Scholar 

  15. I. Kra, S. R. Simanca, On circulant matrices. Not. Am. Math. Soc. 59(3), 368–377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. A. W. Marcus, D. A. Spielman, N. Srivastava, Ramanujan graphs and the solution of the Kadison–Singer problem, in Proceedings of the 2014 International Congress of Mathematicians, Volume III (2014), pp. 363–386. Available at http://www.icm2014.org/en/vod/proceedings

  17. A. W. Marcus, D. A. Spielman, N. Srivastava, Interlacing families I: Bipartite Ramanujan graphs of all degrees. Ann. Math. (2) 182(1), 307–325 (2015)

    Google Scholar 

  18. A. W. Marcus, D. A. Spielman, N. Srivastava, Interlacing families II: mixed characteristic polynomials and the Kadison-Singer problem. Ann. Math. (2) 182(1), 327–350 (2015)

    Google Scholar 

  19. A. W. Marcus, D. A. Spielman, N. Srivastava, Interlacing families III: improved restricted invertibility estimates (2016, in preparation)

    Google Scholar 

  20. A. Naor, Sparse quadratic forms and their geometric applications [following Batson, Spielman and Srivastava]. Astérisque, (348): Exp. No. 1033, viii, 189–217 (2012). Séminaire Bourbaki: vol. 2010/2011. Exposés 1027–1042

    Google Scholar 

  21. A. Pajor, Sous-espacesl 1 n des espaces de Banach. Travaux en Cours [Works in Progress], vol. 16 (Hermann, Paris, 1985). ISBN:2–7056-6021–6. With an introduction by Gilles Pisier

    Google Scholar 

  22. A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen. Stud. Math. 28, 333–353 (1966/1967)

    Google Scholar 

  23. G. Pisier, in Factorization of Linear Operators and Geometry of Banach Spaces. CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, DC, vol. 60 (American Mathematical Society, Providence, 1986). ISBN:0-8218-0710-2

    Google Scholar 

  24. N. Sauer, On the density of families of sets. J. Comb. Theory Ser. A 13, 145–147 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Shelah, A combinatorial problem; stability and order for models and theories in infinitary languages. Pac. J. Math. 41, 247–261 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  26. D. A. Spielman, N. Srivastava, An elementary proof of the restricted invertibility theorem. Isr. J. Math. 190, 83–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Srivastava, R. Vershynin, Covariance estimation for distributions with 2 + ɛ moments. Ann. Probab. 41(5), 3081–3111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. E. Størmer, in Positive Linear Maps of Operator Algebras. Springer Monographs in Mathematics (Springer, Heidelberg, 2013). ISBN:978-3-642-34368-1; 978-3-642-34369-8. doi:10.1007/978-3-642-34369-8

    Google Scholar 

  29. S. J. Szarek, On the geometry of the Banach-Mazur compactum, in Functional Analysis (Austin, TX, 1987/1989), Lecture Notes in Mathematics, vol. 1470 (Springer, Berlin, 1991), pp. 48–59. doi:10.1007/ BFb0090211

    Google Scholar 

  30. S.J. Szarek, M. Talagrand, An “isomorphic” version of the Sauer-Shelah lemma and the Banach-Mazur distance to the cube, in Geometric Aspects of Functional Analysis (1987–1988). Lecture Notes in Mathematics, vol. 1376 (Springer, Berlin, 1989), pp. 105–112. doi:10. 1007/BFb0090050

    Google Scholar 

  31. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38 (Longman Scientific & Technical, Harlow; co-published in the United States with John Wiley & Sons, Inc., New York, 1989). ISBN:0-582-01374-7

    Google Scholar 

  32. J.A. Tropp, Column subset selection, matrix factorization, and eigenvalue optimization, in Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms (SIAM, Philadelphia, 2009), pp. 978–986

    Google Scholar 

  33. R. Vershynin, John’s decompositions: selecting a large part. Isr. J. Math. 122, 253–277 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. P. Youssef, Restricted invertibility and the Banach-Mazur distance to the cube. Mathematika 60(1), 201–218 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Bill Johnson for helpful discussions. This work was initiated while we were participating in the workshop Beyond Kadison–Singer: paving and consequences at the American Institute of Mathematics. We thank the organizers for the excellent working conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assaf Naor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International publishing AG

About this chapter

Cite this chapter

Naor, A., Youssef, P. (2017). Restricted Invertibility Revisited. In: Loebl, M., Nešetřil, J., Thomas, R. (eds) A Journey Through Discrete Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-44479-6_27

Download citation

Publish with us

Policies and ethics