Skip to main content

Approximating the k-Level in Three-Dimensional Plane Arrangements

  • Chapter
  • First Online:
A Journey Through Discrete Mathematics

Abstract

Let H be a set of n non-vertical planes in three dimensions, and let r < n be a parameter. We give a construction that approximates the (nr)-level of the arrangement \(\mathcal{A}(H)\) of H by a terrain consisting of O(rɛ 3) triangular faces, which lies entirely between the levels nr and (1 + ɛ)nr. The proof does not use sampling, and exploits techniques based on planar separators and various structural properties of levels in three-dimensional arrangements and of planar maps. This leads to conceptually cleaner constructions of shallow cuttings in three dimensions.

On the way, we get two other results that are of independent interest: (a) We revisit an old result of Bambah and Rogers (J Lond Math Soc 1(3):304–314, 1952) about triangulating a union of convex pseudo-disks, and provide an alternative proof that yields an efficient algorithmic implementation. (b) We provide a new construction of cuttings in two dimensions.

A preliminary version of this paper appeared in Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2016, 1193–1212 [31]. Work by Sariel Har-Peled was partially supported by NSF AF awards CCF-1421231 and CCF-1217462. Work by Haim Kaplan was partially supported by grant 1161/2011 from the German-Israeli Science Foundation, by grant 1841/14 from the Israel Science Foundation, and by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11). Work by Micha Sharir has been supported by Grant 2012/229 from the U.S.-Israel Binational Science Foundation, by Grant 892/13 from the Israel Science Foundation, by the Israeli Centers for Research Excellence (I-CORE) program (center no. 4/11), by the Blavatnik Research Fund at Tel Aviv University, and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    The term “polygonal” is somewhat misleading, as some of the boundaries of the pseudo-disks of \(\mathcal{D}\) may also be polygonal. To avoid confusion, think of the boundaries of the pseudo-disks of \(\mathcal{D}\) as smooth convex arcs (as drawn in the figures) even though they might be polygonal.

  2. 2.

    The algorithm of [34] constructs κ-divisions for a geometrically increasing sequence of values of the parameter κ, in overall O(N) time.

  3. 3.

    The paper of Chan [16] does not use shallow cuttings.

References

  1. P. Afshani, T.M. Chan, Optimal halfspace range reporting in three dimensions, in Proceedings of the 20th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2009), pp. 180–186

    Google Scholar 

  2. P. Afshani, K. Tsakalidis, Optimal deterministic shallow cuttings for 3d dominance ranges, in Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2014), pp. 1389–1398

    Google Scholar 

  3. P. Afshani, C.H. Hamilton, N. Zeh, A general approach for cache-oblivious range reporting and approximate range counting. Comput. Geom. Theory Appl. 43(8), 700–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Afshani, T.M. Chan, K. Tsakalidis, Deterministic rectangle enclosure and offline dominance reporting on the RAM, in Proceedings of the 41st International Colloquium on Automata, Languages and Programming (ICALP). Volume 8572 of Lecture Notes in Computer Science (Springer, 2014), pp. 77–88

    Google Scholar 

  5. P.K. Agarwal, Partitioning arrangements of lines I: an efficient deterministic algorithm. Discrete Comput. Geom. 5, 449–483 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. P.K. Agarwal, Partitioning arrangements of lines: II. Applications. Discrete Comput. Geom. 5, 533–573 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. P.K. Agarwal, Geometric partitioning and its applications, in Computational Geometry: Papers from the DIMACS Special Year, ed. by J.E. Goodman, R. Pollack, W. Steiger (American Mathematical Society, Providence, 1991), pp. 1–37

    Google Scholar 

  8. P.K. Agarwal, Intersection and Decomposition Algorithms for Planar Arrangements (Cambridge University Press, New York, 1991)

    MATH  Google Scholar 

  9. P.K. Agarwal, P.K. Desikan, An efficient algorithm for terrain simplification, in Proceedings of the 8th ACM-SIAM Symposium on Discrete Algorithms (SODA) (1997), pp. 139–147

    Google Scholar 

  10. P.K. Agarwal, J. Erickson, Geometric range searching and its relatives, in Advances in Discrete and Computational Geometry, ed. by B. Chazelle, J.E. Goodman, R. Pollack (American Mathematical Society, Providence, 1999), pp. 1–56

    Google Scholar 

  11. P.K. Agarwal, J. Matoušek, Dynamic half-space range reporting and its applications. Algorithmica 13, 325–345 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. P.K. Agarwal, S. Suri, Surface approximation and geometric partitions. SIAM J. Comput. 27(4), 1016–1035 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. P.K. Agarwal, B. Aronov, T.M. Chan, M. Sharir, On levels in arrangements of lines, segments, planes, and triangles. Discrete Comput. Geom. 19, 315–331 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Aronov, M. de Berg, E. Ezra, M. Sharir, Improved bounds for the union of locally fat objects in the plane. SIAM J. Comput. 43(2), 543–572 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. R.P. Bambah, C.A. Rogers, Covering the plane with convex sets. J. Lond. Math. Soc. 1(3), 304–314 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  16. T.M. Chan, Random sampling, halfspace range reporting, and construction of ( ≤ k)-levels in three dimensions. SIAM J. Comput. 30(2), 561–575 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. T.M. Chan, Low-dimensional linear programming with violations. SIAM J. Comput. 34(4), 879–893 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. T.M. Chan, A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. J. Assoc. Comput. Mach. 57(3), 1–15 (2010). Art. 16

    Google Scholar 

  19. T.M. Chan, K. Tsakalidis, Optimal deterministic algorithms for 2-d and 3-d shallow cuttings, in Proceedings of the 31st International Annual Symposium on Computational Geometry (SoCG) (2015), pp. 719–732

    Google Scholar 

  20. B. Chazelle, Cutting hyperplanes for divide-and-conquer. Discrete Comput. Geom. 9(2), 145–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Chazelle, Cuttings (chapter 25), in Handbook of Data Structures and Applications, ed. by D.P. Mehta, S. Sahni (Chapman and Hall/CRC, Boca Raton, 2004)

    Google Scholar 

  22. B. Chazelle, J. Friedman, A deterministic view of random sampling and its use in geometry. Combinatorica 10(3), 229–249 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  23. B. Chazelle, H. Edelsbrunner, L.J. Guibas, M. Sharir, A singly-exponential stratification scheme for real semi-algebraic varieties and its applications. Theoret. Comput. Sci. 84, 77–105 (1991). Also in Proceedings of the 16th International Colloquium on Automata, Languages and Programming, pp. 179–193

    Google Scholar 

  24. K.L. Clarkson, New applications of random sampling in computational geometry. Discrete Comput. Geom. 2, 195–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  25. K.L. Clarkson, P.W. Shor, Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 4, 387–421 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  26. K.L. Clarkson, H. Edelsbrunner, L.J. Guibas, M. Sharir, E. Welzl, Combinatorial complexity bounds for arrangements of curves and spheres. Discrete Comput. Geom. 5, 99–160 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  27. E. Ezra, D. Halperin, M. Sharir, Speeding up the incremental construction of the union of geometric objects in practice. Comput. Geom. Theory Appl. 27(1), 63–85 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. G.N. Frederickson, Fast algorithms for shortest paths in planar graphs, with applications. SIAM J. Comput. 16(6), 1004–1022 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Har-Peled, Constructing planar cuttings in theory and practice. SIAM J. Comput. 29(6), 2016–2039 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Har-Peled, M. Sharir, Relative (p, ɛ)-approximations in geometry. Discrete Comput. Geom. 45(3), 462–496 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Har-Peled, H. Kaplan, M. Sharir, Approximating the k-level in three-dimensional plane arrangements, in Proceedings of the 27th ACM-SIAM Symposium on Discrete Algorithms (SODA) (2016), pp. 1193–1212

    Google Scholar 

  32. S. Har-Peled, H. Kaplan, M. Sharir, Approximating the k-level in three-dimensional plane arrangements. CoRR (2016). abs/1601.04755

  33. K. Kedem, R. Livne, J. Pach, M. Sharir, On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles. Discrete Comput. Geom. 1, 59–71 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. P.N. Klein, S. Mozes, C. Sommer, Structured recursive separator decompositions for planar graphs in linear time, in Proceedings of the 45th Annual ACM Symposium on Theory Computing (STOC) (2013), pp. 505–514

    Google Scholar 

  35. V. Koltun, Almost tight upper bounds for vertical decompositions in four dimensions. J. Assoc. Comput. Mach. 51(5), 699–730 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Koltun, M. Sharir, Curve-sensitive cuttings. SIAM J. Comput. 34(4), 863–878 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. R.J. Lipton, R.E. Tarjan, A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Matoušek, Construction of ɛ-nets. Discrete Comput. Geom. 5, 427–448 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  39. J. Matoušek, Efficient partition trees. Discrete Comput. Geom. 8, 315–334 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. J. Matoušek, Range searching with efficient hierarchical cutting. Discrete Comput. Geom. 10, 157–182 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Matoušek, Reporting points in halfspaces. Comput. Geom. Theory Appl. 2(3), 169–186 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Matoušek, On constants for cuttings in the plane. Discrete Comput. Geom. 20, 427–448 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Matoušek, N. Miller, J. Pach, M. Sharir, S. Sifrony, E. Welzl, Fat triangles determine linearly many holes, in Proceedings of the 32nd Annual IEEE Symposium on Foundations of Computer Science (FOCS) (1991), pp. 49–58

    Google Scholar 

  44. G.L. Miller, Finding small simple cycle separators for 2-connected planar graphs. J. Comput. Syst. Sci. 32(3), 265–279 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. K. Mulmuley, An efficient algorithm for hidden surface removal, II. J. Comput. Syst. Sci. 49, 427–453 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  46. N.H. Mustafa, R. Raman, S. Ray, Settling the APX-hardness status for geometric set cover, in Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS) (2014), pp. 541–550

    Google Scholar 

  47. J. Pach, P.K. Agarwal, Combinatorial Geometry (Wiley, New York, 1995)

    Book  MATH  Google Scholar 

  48. E.A. Ramos, On range reporting, ray shooting and k-level construction, in Proceedings of the 15th Annual Symposium on Computational Geometry (SoCG) (ACM, 1999), pp. 390–399

    Google Scholar 

  49. R. Seidel, A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons. Comput. Geom. Theory Appl. 1, 51–64 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Sharir, P.K. Agarwal, Davenport-Schinzel Sequences and Their Geometric Applications (Cambridge University Press, New York, 1995)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank János Pach for pointing out that a variant of Theorem 2.3 is already known. We also thank the anonymous referees for their useful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haim Kaplan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International publishing AG

About this chapter

Cite this chapter

Har-Peled, S., Kaplan, H., Sharir, M. (2017). Approximating the k-Level in Three-Dimensional Plane Arrangements. In: Loebl, M., Nešetřil, J., Thomas, R. (eds) A Journey Through Discrete Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-319-44479-6_19

Download citation

Publish with us

Policies and ethics