Skip to main content

Dévissage of a Poisson Boundary Under Equivariance and Regularity Conditions

  • Chapter
  • First Online:
Séminaire de Probabilités XLVIII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2168))

Abstract

We present a method that allows, under suitable equivariance and regularity conditions, to determine the Poisson boundary of a diffusion starting from the Poisson boundary of a sub-diffusion of the original one. We then give two examples of application of this dévissage method. Namely, we first recover the classical result that the Poisson boundary of Brownian motion on a rotationally symmetric manifolds is generated by its escape angle, and we then give an “elementary” probabilistic proof of the delicate result of Bailleul (Probab Theory Relat Fields 141(1–2):283-329, 2008), i.e. the determination of the Poisson boundary of the relativistic Brownian motion in Minkowski space-time.

MSC Classification: 60J45, 60J60, 53C30, 58D19

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Arnaudon, A. Thalmaier, Brownian motion and negative curvature, in Random Walks, Boundaries and Spectra. Progress in Probability, vol. 64, ed. by L. Daniel et al. (Birkhäuser, Basel, 2011), pp. 143–161. Proceedings of the workshop on boundaries, Graz, Austria, June 29–July 3, 2009 and the Alp-workshop, Sankt Kathrein, Austria, July 4–5, 2009

    Google Scholar 

  2. M. Arnaudon, A. Thalmaier, S. Ulsamer, Existence of non-trivial harmonic functions on Cartan-Hadamard manifolds of unbounded curvature. Math. Z. 263, 369–409 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Babillot, An introduction to Poisson boundaries of Lie groups, in Probability Measures on Groups: Recent Directions and Trends (Tata Institute of Fundamental Research, Mumbai, 2006), pp. 1–90

    MATH  Google Scholar 

  4. I. Bailleul, Poisson boundary of a relativistic diffusion. Probab. Theory Relat. Fields 141 (1–2), 283–329 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Bailleul, A. Raugi, Where does randomness lead in spacetime? ESAIM Probab. Stat. 14, 16–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Dellacherie, P.-A. Meyer, Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72 (North-Holland, Amsterdam, 1982). Theory of martingales, Translated from the French by J.P. Wilson

    Google Scholar 

  7. R.M. Dudley, Lorentz-invariant Markov processes in relativistic phase space. Ark. Mat. 6, 241–268 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Franchi, Y. Le Jan, Hyperbolic Dynamics and Brownian Motion. Oxford Mathematical Monographs (Oxford University Press, Oxford, 2012). An introduction

    Google Scholar 

  9. H. Furstenberg, Boundary theory and stochastic processes on homogeneous spaces, in Harmonic Analysis on Homogeneous Spaces. Proceedings of Symposia in Pure Mathematics, vol. XXVI, Williams Coll., Williamstown, Mass., 1972 (American Mathematical Society, Providence, RI, 1973), pp. 193–229

    Google Scholar 

  10. V.A. Kaimanovich, Measure-theoretic boundaries of Markov chains, 0-2 laws and entropy, in Harmonic Analysis and Discrete Potential Theory (Frascati, 1991) (Plenum, New York, 1992), pp. 145–180

    Google Scholar 

  11. M. Liao, Lévy Processes in Lie Groups. Cambridge Tracts in Mathematics, vol. 162 (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  12. P. March, Brownian motion and harmonic functions on rotationally symmetric manifolds. Ann. Probab. 14 (3), 793–801 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Raugi, Fonctions harmoniques sur les groupes localement compacts à base dénombrable. Bull. Soc. Math. France Mém. 54, 5–118 (1977)

    MathSciNet  MATH  Google Scholar 

  14. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, New York, 1999)

    Book  MATH  Google Scholar 

  15. D. Sullivan, The Dirichlet problem at infinity for a negatively curved manifold. J. Differ. Geom. 18 (4), 723–732 (1983/1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Angst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Angst, J., Tardif, C. (2016). Dévissage of a Poisson Boundary Under Equivariance and Regularity Conditions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVIII. Lecture Notes in Mathematics(), vol 2168. Springer, Cham. https://doi.org/10.1007/978-3-319-44465-9_8

Download citation

Publish with us

Policies and ethics