Skip to main content

The Maximum of the Local Time of a Diffusion Process in a Drifted Brownian Potential

  • Chapter
  • First Online:
Book cover Séminaire de Probabilités XLVIII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2168))

  • 740 Accesses

Abstract

We consider a one-dimensional diffusion process X in a (−κ∕2)-drifted Brownian potential for κ ≠ 0. We are interested in the maximum of its local time, and study its almost sure asymptotic behaviour, which is proved to be different from the behaviour of the maximum local time of the transient random walk in random environment. We also obtain the convergence in law of the maximum local time of X under the annealed law after suitable renormalization when κ ≥ 1. Moreover, we characterize all the upper and lower classes for the hitting times of X, in the sense of Paul Lévy, and provide laws of the iterated logarithm for the diffusion X itself. To this aim, we use annealed technics.

AMS Classification (2010): 60K37, 60J60, 60J55, 60F15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Andreoletti, On the concentration of Sinai’s walk. Stoch. Process. Appl. 116, 1377–1408 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Andreoletti, Almost sure estimates for the concentration neighborhood of Sinai’s walk. Stoch. Process. Appl. 117, 1473–1490 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Andreoletti, A. Devulder, Localization and number of visited valleys for a transient diffusion in random environment. Electron. J. Probab. 20, 1–58 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Andreoletti, R. Diel, Limit law of the local time for Brox’s diffusion. J. Theor. Probab. 24, 634–656 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Andreoletti, A. Devulder, G. Véchambre, Renewal structure and local time for diffusions in random environment. ALEA, Lat. Am. J. Probab. Math. Stat. 13, 863–923 (2016)

    Google Scholar 

  6. M.T. Barlow, M. Yor, Semimartingale inequalities via the Garsia-Rodemich-Rumsey lemma, and applications to local times. J. Funct. Anal. 49, 198–229 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Bertoin, Lévy Processes (Cambridge University Press, Cambridge, 1996)

    MATH  Google Scholar 

  8. P. Biane, M. Yor, Valeurs principales associées aux temps locaux browniens. Bull. Sci. Math. 111, 23–101 (1987)

    MathSciNet  MATH  Google Scholar 

  9. N.H. Bingham, J.L. Teugels, Duality for regularly varying functions. Q. J. Math. Oxford Ser. (2) 26, 333–353 (1975)

    Google Scholar 

  10. A.N. Borodin, P. Salminen, Handbook of Brownian Motion—Facts and Formulae, 2nd edn. (Birkhäuser, Boston, 2002)

    Book  MATH  Google Scholar 

  11. T. Brox, A one-dimensional diffusion process in a Wiener medium. Ann. Probab. 14,1206–1218 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Carmona, The mean velocity of a Brownian motion in a random Lévy potential. Ann. Probab. 25, 1774–1788 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Cheliotis, One-dimensional diffusion in an asymmetric random environment. Ann. Inst. Henri Poincaré Probab. Stat. 42, 715–726 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Cheliotis, Localization of favorite points for diffusion in a random environment. Stoch. Proc. Appl. 118, 1159–1189 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Comets, M. Falconnet, O. Loukianov, D. Loukianova, C. Matias, Maximum likelihood estimator consistency for a ballistic random walk in a parametric random environment. Stoch. Proc. Appl. 124, 268–288 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Deheuvels, P. Révész, Simple random walk on the line in random environment. Probab. Theory Relat. Fields 72, 215–230 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications, 2nd edn. (Springer, New York, 1998)

    Book  MATH  Google Scholar 

  18. A. Dembo, N. Gantert, Y. Peres, Z. Shi, Valleys and the maximum local time for random walk in random environment. Probab. Theory Relat. Fields 137, 443–473 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. A. Devulder, Almost sure asymptotics for a diffusion process in a drifted Brownian potential. Preprint arXiv:math/0511053 (2005)

    Google Scholar 

  20. A. Devulder, Some properties of the rate function of quenched large deviations for random walk in random environment. Markov Process. Relat. Fields 12, 27–42 (2006)

    MathSciNet  MATH  Google Scholar 

  21. A. Devulder, Persistence of some additive functionals of Sinai’s walk. Ann. Inst. Henri Poincaré Probab. Stat. 52, 1076–1105 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Diel, Almost sure asymptotics for the local time of a diffusion in Brownian environment. Stoch. Proc. Appl. 121, 2303–2330 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Diel, G. Voisin, Local time of a diffusion in a stable Lévy environment. Stochastics 83, 127–152 (2011)

    MathSciNet  MATH  Google Scholar 

  24. D. Dufresne, Laguerre series for Asian and other options. Math. Finance 10, 407–428 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Faraud, Estimates on the speedup and slowdown for a diffusion in a drifted Brownian potential. J. Theor. Probab. 24, 194–239 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. N. Gantert, Z. Shi, Many visits to a single site by a transient random walk in random environment. Stoch. Process. Appl. 99, 159–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. N. Gantert, Y. Peres, Z. Shi, The infinite valley for a recurrent random walk in random environment. Ann. Inst. Henri Poincaré Probab. Stat. 46, 525–536 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Göing-Jaeschke, M. Yor, A survey and some generalizations of Bessel processes. Bernoulli 9, 313–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Hu, Z. Shi, The limits of Sinai’s simple random walk in random environment. Ann. Probab. 26, 1477–1521 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Hu, Z. Shi, The local time of simple random walk in random environment. J. Theor. Probab. 11, 765–793 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Y. Hu, Z. Shi, The problem of the most visited site in random environment. Probab. Theory Relat. Fields 116, 273–302 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Hu, Z. Shi, Moderate deviations for diffusions with Brownian potential. Ann. Probab. 32, 3191–3220 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Hu, Z. Shi, M. Yor, Rates of convergence of diffusions with drifted Brownian potentials. Trans. Am. Math. Soc. 351, 3915–3934 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Karlin, H.M. Taylor, A Second Course in Stochastic Processes (Academic, New York, 1981)

    MATH  Google Scholar 

  35. K. Kawazu, H. Tanaka, On the maximum of a diffusion process in a drifted Brownian environment, in Séminaire de Probabilités XXVII. Lecture Notes in Mathematics, vol. 1557 (Springer, Berlin, 1993), pp. 78–85

    Google Scholar 

  36. K. Kawazu, H. Tanaka, A diffusion process in a Brownian environment with drift. J. Math. Soc. Japan 49, 189–211 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. P. Le Doussal, C. Monthus, D. Fisher, Random walkers in one-dimensional random environments: exact renormalization group analysis. Phys. Rev. E 3 59, 4795–4840 (1999)

    Article  MathSciNet  Google Scholar 

  38. P. Mathieu, On random perturbations of dynamical systems and diffusions with a Brownian potential in dimension one. Stoch. Process. Appl. 77, 53–67 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. P. Révész, Random Walk in Random and Non-random Environments (World Scientific, Singapore, 1990)

    Book  MATH  Google Scholar 

  40. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd edn. (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  41. G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian Random Processes (Chapman and Hall, New York, 1994)

    MATH  Google Scholar 

  42. S. Schumacher, Diffusions with random coefficients. Contemp. Math. 41, 351–356 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. Z. Shi, A local time curiosity in random environment. Stoch. Process. Appl. 76, 231–250 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  44. Z. Shi, Sinai’s walk via stochastic calculus, in Panoramas et Synthèses, vol. 12, ed. by F. Comets, E. Pardoux (Société Mathématique de Francen, Paris, 2001), pp. 53–74

    Google Scholar 

  45. A. Singh, Limiting behavior of a diffusion in an asymptotically stable environment. Ann. Inst. Henri Poincaré Probab. Stat. 43, 101–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  46. A. Singh, Rates of convergence of a transient diffusion in a spectrally negative lévy potential. Ann. Probab. 36, 279–318 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  47. M. Taleb, Large deviations for a Brownian motion in a drifted Brownian potential. Ann. Probab. 29, 1173–1204 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. M. Talet, Annealed tail estimates for a Brownian motion in a drifted Brownian potential. Ann. Probab. 35, 32–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  49. H. Tanaka, Limit distribution for 1-dimensional diffusion in a reflected Brownian medium, in Séminaire de Probabilités XXI. Lecture Notes in Mathematics, vol. 1247 (Springer, Berlin, 1987), pp. 246–261

    Google Scholar 

  50. J. Warren, M. Yor, The Brownian burglar: conditioning Brownian motion by its local time process, in Séminaire de Probabilités XXXII. Lecture Notes in Mathematics, vol. 1686 (Springer, Berlin, 1998), pp. 328–342

    Google Scholar 

  51. M. Yor, Sur certaines fonctionnelles exponentielles du mouvement brownien réel. J. Appl. Probab. 29, 202–208 (1992)

    MathSciNet  Google Scholar 

  52. M. Yor, Local Times and Excursions for Brownian Motion: A Concise Introduction. Lecciones en Mathemàticas, vol. 1 (Universidad Central de Venuezuela, Caracas, 1995)

    Google Scholar 

  53. O. Zeitouni, Lecture notes on random walks in random environment, in École d’été de Probabilités de Saint-Flour 2001. Lecture Notes in Mathematics, vol. 1837 (Springer, Berlin, 2004), pp. 189–312

    Google Scholar 

  54. O. Zindy, Upper limits of Sinai’s walk in random scenery. Stoch. Process. Appl. 118, 981–1003 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Zhan Shi for many helpful discussions. I am also grateful to an anonymous referee for a very careful reading of the first version of the paper and for valuable comments which helped improve the presentation of the paper, including a recommendation to merge the first version of this paper with [19].

This research was partially supported by the French ANR project MEMEMO2 2010 BLAN 0125.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Devulder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Devulder, A. (2016). The Maximum of the Local Time of a Diffusion Process in a Drifted Brownian Potential. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVIII. Lecture Notes in Mathematics(), vol 2168. Springer, Cham. https://doi.org/10.1007/978-3-319-44465-9_5

Download citation

Publish with us

Policies and ethics