Skip to main content

t-Martin Boundary of Killed Random Walks in the Quadrant

  • Chapter
  • First Online:
Séminaire de Probabilités XLVIII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2168))

Abstract

We compute the t-Martin boundary of two-dimensional small steps random walks killed at the boundary of the quarter plane. We further provide explicit expressions for the (generating functions of the) discrete t-harmonic functions. Our approach is uniform in t, and shows that there are three regimes for the Martin boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Bernardi, M. Bousquet-Mélou, K. Raschel, Counting quadrant walks via Tutte’s invariant method. 1–13 (2015). Preprint. arXiv:1511.04298

    Google Scholar 

  2. P. Biane, Quantum random walk on the dual of SU(n). Probab. Theory Relat. Fields 89, 117–129 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Biane, Minuscule weights and random walks on lattices, in Quantum Probability & Related Topics (World Scientific, River Edge, NJ, 1992), pp. 51–65

    Book  MATH  Google Scholar 

  4. A. Bouaziz, S. Mustapha, M. Sifi, Discrete harmonic functions on an orthant in Z d. Electron. Commun. Probab. 20, 1–13 (2015)

    MathSciNet  MATH  Google Scholar 

  5. G. Fayolle, K. Raschel, Random walks in the quarter-plane with zero drift: an explicit criterion for the finiteness of the associated group. Markov Process. Relat. Fields 17, 619–636 (2011)

    MathSciNet  MATH  Google Scholar 

  6. G. Fayolle, R. Iasnogorodski, V. Malyshev, Random Walks in the Quarter Plane (Springer, Berlin, 1999)

    Book  MATH  Google Scholar 

  7. P.-L. Hennequin, Processus de Markoff en cascade. Ann. Inst. H. Poincaré 18, 109–195 (1963)

    MathSciNet  MATH  Google Scholar 

  8. I. Ignatiouk-Robert, Martin boundary of a killed random walk on Z d. 1–49 (2009). Preprint. arXiv:0909.3921

    Google Scholar 

  9. I. Ignatiouk-Robert, t-Martin boundary of reflected random walks on a half-space. Electron. Commun. Probab. 15, 149–161 (2010)

    Google Scholar 

  10. I. Ignatiouk-Robert, C. Loree, Martin boundary of a killed random walk on a quadrant. Ann. Probab. 38, 1106–1142 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Kurkova, V. Malyshev, Martin boundary and elliptic curves. Markov Process. Relat. Fields 4, 203–272 (1998)

    MathSciNet  MATH  Google Scholar 

  12. I. Kurkova, K. Raschel, Random walks in Z + 2 with non-zero drift absorbed at the axes. Bull. Soc. Math. Fr. 139, 341–387 (2011)

    MathSciNet  MATH  Google Scholar 

  13. C. Lecouvey, E. Lesigne, M. Peigné, Random walks in Weyl chambers and crystals. Proc. Lond. Math. Soc. 104, 323–358 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Integral Equations with Shift (Kluwer, Dordrecht, 2000)

    Book  MATH  Google Scholar 

  15. M. Picardello, W. Woess, Martin boundaries of Cartesian products of Markov chains. Nagoya Math. J. 128, 153–169 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Pruitt, Eigenvalues of nonnegative matrices. Ann. Math. Stat. 35, 1797–1800 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Raschel, Random walks in the quarter plane, discrete harmonic functions and conformal mappings. Stoch. Process. Appl. 124, 3147–3178 (2014). With an appendix by S. Franceschi

    Google Scholar 

  18. W. Tutte, Chromatic sums for rooted planar triangulations. V. Special equations. Can. J. Math. 26, 893–907 (1974)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Irina Ignatiouk-Robert for very interesting discussions, in particular for suggesting Proposition 1 and Lemma 8. We acknowledge support from the project MADACA of the Région Centre. The second author would like to thank Gerold Alsmeyer and the Institut für Mathematische Statistik (Universität Münster, Germany), where the project has started. We finally thank a referee for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kilian Raschel .

Editor information

Editors and Affiliations

Appendix: Explicit Expressions for w

Appendix: Explicit Expressions for w

It turns out that a suitable expression for w has been found in [6, Sect. 5.5.2]. Let us briefly explain why such a function appears in [6]. The main goal of Fayolle et al. [6] is to develop a theory for solving a functional equation satisfied by the stationary probabilities generating function of reflected random walks in the quarter plane. The functional equation in [6] is closed to ours [compare [6, Eq. (1.3.6)] with (6)]. Roughly speaking, the general solution of Fayolle et al. [6] can be expressed as

$$\displaystyle{ \int f(y) \frac{w'(y)} {w(x) - w(y)}\text{d}y }$$

for some function f, with the same function w as ours. Our situation is therefore simpler, since we can express the solutions directly in terms of w, without any integral.

In this section we simply state the expression of w, and we refer to [6, Chap. 5] or to [12, Sect. 3] for the details. The expression is

$$\displaystyle{ w(x) = \frac{u(x_{0})} {u(x) - u(x_{0})} - \frac{u(x_{0})} {u(0) - u(x_{0})} }$$
(19)

(the second term \(\frac{u(x_{0})} {u(0)-u(x_{0})}\) in (19) is to ensure that w(0) = 0), where the function u is different in the two cases t ∈ (t 0, ) and t = t 0.

1.1 Case t ∈ (t 0, )

In that case, u can be expressed in terms of Weiertrass elliptic functions, with the formula

$$\displaystyle{ u(x) = \wp _{1,3}(s^{-1}(x) -\omega _{ 2}/2), }$$
(20)

where

  • 1, 3 is the Weierstrass elliptic function associated with the periods ω 1 and ω 3 defined in (21), i.e.,

    $$\displaystyle{ \wp _{1,3}(\omega ) = \frac{1} {\omega ^{2}} +\sum _{n_{1},n_{3}\in \mathbf{Z}}\left \{ \frac{1} {(\omega -n_{1}\omega _{1} - n_{3}\omega _{3})^{2}} - \frac{1} {(n_{1}\omega _{1} + n_{3}\omega _{3})^{2}}\right \}, }$$
  • ω 1 and ω 2 are defined as below [with δ as in (8)]:

    $$\displaystyle{ \omega _{1} = i\int _{x_{1}}^{x_{2} } \frac{\text{d}x} {\sqrt{-\delta (x)}},\qquad \omega _{2} =\int _{ x_{2}}^{x_{3} } \frac{\text{d}x} {\sqrt{\delta (x)}},\qquad \omega _{3} =\int _{ X(y_{1})}^{x_{1} } \frac{\text{d}x} {\sqrt{\delta (x)}}, }$$
    (21)
  • s(ω) = g −1( 1, 2(ω)), where 1, 2 is the Weierstrass elliptic function associated with the periods ω 1 and ω 2, and g −1 is the reciprocal function of

    $$\displaystyle{ g(x) = \left \{\begin{array}{lll} \frac{\delta ''(x_{4})} {6} + \frac{\delta '(x_{4})} {x - x_{4}} & \text{if}&x_{4}\neq \infty, \\ \frac{\delta ''(0)} {6} + \frac{\delta '''(0)x} {6} &\text{if}&x_{4} = \infty,\end{array} \right. }$$
    (22)
  • x 0 ∈ (X(y 1), x 2){0} is arbitrary.

1.2 Case t = t 0

We have

$$\displaystyle{ u(x) = \left ( \frac{\pi } {\omega _{3}}\right )^{2}\left \{\sin \left (\frac{\pi } {\theta }\left [\arcsin \left ( \frac{1} {\sqrt{\frac{1} {3} -\frac{2g(x)} {\delta ''(1)}} }\right ) - \frac{\pi } {2}\right ]\right )^{-2} -\frac{1} {3}\right \}, }$$
(23)

with g as in (22) and

$$\displaystyle{ \theta =\arccos \left (-\frac{\sum _{-1\leq i,j\leq 1}ijp_{i,j}x_{2}^{i}y_{2}^{\,j}} {2\sqrt{\alpha (x_{2 } )\tilde{\alpha }(y_{2 } )}} \right ). }$$

1.3 Remarks

It can be shown that:

  • The expressions given in (20) and (23) are a priori complicated, but it may happen that for some { p k,  }, they become much simpler. If p 0, 1 + p 1, 0 + p 0, −1 + p −1, 0 = 1 for instance, the function u is rational. More generally, if ω 2ω 3 ∈ Q, then u is an algebraic function. See [12, Proposition 15 and Remark 16] for further remarks on u.

  • The function u is continuous w.r.t. the eigenvalue t ∈ [t 0, ), see [5, Sect. 2.2].

  • At t = t 0 we have x 2 = x 3 and y 2 = y 3 (in fact t 0 = inf{t > 0: x 2 = x 3} = inf{t > 0: y 2 = y 3}).

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lecouvey, C., Raschel, K. (2016). t-Martin Boundary of Killed Random Walks in the Quadrant. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités XLVIII. Lecture Notes in Mathematics(), vol 2168. Springer, Cham. https://doi.org/10.1007/978-3-319-44465-9_11

Download citation

Publish with us

Policies and ethics