Advertisement

Introduction and Motivation for Dark Matter

  • Steven SchrammEmail author
Chapter
  • 409 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

One of the largest remaining open questions in physics is the nature of DM. First postulated in the 1930s [1, 2], many independent astrophysical experiments have observed the effects of DM. Cosmology has even measured its abundance to be approximately five times that of the visible matter which makes up the universe [3], including all of the stars, planets, black holes, and other known sources of matter. However, there remains no experimentally verified theory that explains the origin of DM. While numerous experiments have been designed to search for DM, and some have claimed observations consistent with the signal expected from such a phenomenon [4], the nature of DM remains unknown.

Keywords

Dark Matter Higgs Boson Cosmic Microwave Background Weakly Interact Massive Particle Direct Detection Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.N. Bahcall, C. Flynn, A. Gould, Local dark matter from a carefully selected sample. Astrophys. J. 389, 234–250 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    F. Zwicky, Die rotverschiebung von extragalaktischen nebeln. Helv. Phys. Acta 6, 110–127 (1933)ADSzbMATHGoogle Scholar
  3. 3.
    Planck Collaboration, Planck 2013 results. XV. CMB power spectra and likelihood. Astron. Astrophys. 571, A15 (2014). arXiv:1303.5075 [astro-ph.CO]CrossRefGoogle Scholar
  4. 4.
    DAMA Collaboration, First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008). arXiv:0804.2741 [astro-ph]
  5. 5.
    D. Griffiths, Introduction to Elementary Particles (Wiley, London, 2008)zbMATHGoogle Scholar
  6. 6.
    A. Purcell, Go on a particle quest at the first CERN webfest. Le premier webfest du CERN se lance la conqute des particules, BUL-NA-2012-269. 35/2012, Aug 2012Google Scholar
  7. 7.
    Particle Data Group Collaboration, K. Olive et al., Review of Particle Physics. Chin. Phys. C 38, 090001 (2014)Google Scholar
  8. 8.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview, Boulder, 1995)Google Scholar
  9. 9.
    Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014). arXiv:1303.5076 [astro-ph.CO]CrossRefGoogle Scholar
  10. 10.
    G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). arXiv:hep-ph/0404175 [hep-ph]
  11. 11.
    L. Bergstrom, Nonbaryonic dark matter: observational evidence and detection methods. Rep. Prog. Phys. 63, 793 (2000). arXiv:hep-ph/0002126 [bibhep-ph]ADSCrossRefGoogle Scholar
  12. 12.
    D. Hooper, TASI 2008 lectures on dark matter. Technical report, FERMILAB-CONF-09-025-A (2009). arXiv:0901.4090 [hep-ph]
  13. 13.
    K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191–3203 (1991), http://link.aps.org/doi/10.1103/PhysRevD.43.3191
  14. 14.
    M. Azzaro, F. Prada, C. Gutierrez, Motion properties of satellites around external spiral galaxies. ASP Conf. Ser. 327, 268 (2004). arXiv:astro-ph/0310487 [astro-ph]ADSGoogle Scholar
  15. 15.
    H. Hoekstra, H. Yee, M. Gladders, Current status of weak gravitational lensing. New Astronon. Rev. 46, 767–781 (2002). arXiv:astro-ph/0205205 [astro-ph]
  16. 16.
    K. Begeman, A. Broeils, R. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon. Not. R. Astron. Soc. 249(3), 523–537 (1991)ADSCrossRefGoogle Scholar
  17. 17.
    NASA Chandra X-ray Observatory, NASA finds direct proof of dark matter, http://chandra.harvard.edu/press/06_releases/press_082106.html
  18. 18.
    D. Clowe et al., A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006). arXiv:astro-ph/0608407 [bibastro-ph]
  19. 19.
    G.W. Angus, B. Famaey, H. Zhao, Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry. Mon. Not. R. Astron. Soc. 371, 138 (2006). arXiv:astro-ph/0606216 [astro-ph]ADSCrossRefGoogle Scholar
  20. 20.
    J. Allday, Quarks, Leptons and the Big Bang (CRC Press, Boca Raton, 2012)Google Scholar
  21. 21.
    Planck Collaboration, Planck picture gallery, http://www.cosmos.esa.int/web/planck/picture-gallery
  22. 22.
    Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014). arXiv:1303.5062 [astro-ph.CO]CrossRefGoogle Scholar
  23. 23.
    J.L. Feng, Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495–545 (2010). arXiv:1003.0904 [astro-ph.CO]
  24. 24.
    F. Arneodo, Dark matter searches. ArXiv e-prints (2013). arXiv:1301.0441 [astro-ph.IM]
  25. 25.
    LUX Collaboration, First results from the LUX dark matter experiment at the Sanford Underground Research Facility. arXiv:1310.8214 [astro-ph.CO]
  26. 26.
    COUPP Collaboration, First dark matter search results from a 4-kg CF\(_{3}\)I bubble chamber operated in a deep underground site. Phys. Rev. D 86(5), 052001 (2012). arXiv:1204.3094 [astro-ph.CO]
  27. 27.
    C.D.M.S. Collaboration, Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111, 251301 (2013). arXiv:1304.4279 [hep-ex]CrossRefGoogle Scholar
  28. 28.
    CRESST-II Collaboration, Results from 730 kg days of the CRESST-II dark matter search. Eur. Phys. J. C 72, 1971 (2012). arXiv:1109.0702 [astro-ph.CO]
  29. 29.
    CoGeNT Collaboration, Maximum likelihood signal extraction method applied to 3.4 years of CoGeNT data. arXiv:1401.6234 [astro-ph.CO]
  30. 30.
    CoGeNT Collaboration, CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. Phys. Rev. D 88(1), 012002 (2013). arXiv:1208.5737 [astro-ph.CO]
  31. 31.
    XENON100 Collaboration, Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys. Rev. Lett. 111(2), 021301 (2013). arXiv:1301.6620 [astro-ph.CO]
  32. 32.
    IceCube Collaboration, Search for dark matter annihilations in the Sun with the 79-String IceCube Detector. Phys. Rev. Lett. 110, 131302 (2013), http://link.aps.org/doi/10.1103/PhysRevLett.110.131302
  33. 33.
    PICASSO Collaboration, Constraints on low-mass WIMP interactions on \(^{19}\)F from PICASSO. Phys. Lett. B 711, 153–161 (2012). arXiv:1202.1240 [hep-ex]
  34. 34.
    SIMPLE Collaboration, Final analysis and results of the Phase II SIMPLE dark matter search. Phys. Rev. Lett. 108(20), 201302 (2012). arXiv:1106.3014
  35. 35.
    Super-Kamiokande Collaboration, An indirect search for weakly interacting massive particles in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande. Astrophys. J. 742, 78 (2011). arXiv:1108.3384 [astro-ph.HE]ADSCrossRefGoogle Scholar
  36. 36.
    G. Chalons, Gamma-ray lines constraints in the NMSSM. arXiv:1204.4591 [hep-ph]
  37. 37.
    J. Kopp, Constraints on dark matter annihilation from AMS-02 results. Phys. Rev. D 88, 076013 (2013), http://link.aps.org/doi/10.1103/PhysRevD.88.076013
  38. 38.
    A.D. Simone, A. Riotto, W. Xue, Interpretation of AMS-02 results: correlations among dark matter signals. J. Cosmol. Astropart. Phys. 05, 003 (2013), http://stacks.iop.org/1475-7516/2013/i=05/a=003
  39. 39.
    AMS Collaboration, First result from the alpha magnetic spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 141102 (2013), http://link.aps.org/doi/10.1103/PhysRevLett.110.141102
  40. 40.
    Fermi-LAT Collaboration, Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope. Phys. Rev. D 89, 042001 (2014), http://link.aps.org/doi/10.1103/PhysRevD.89.042001
  41. 41.
    C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope. J. Cosmol. Astropart. Phys. 1208, 007 (2012). arXiv:1204.2797 [hep-ph]ADSCrossRefGoogle Scholar
  42. 42.
    Fermi-LAT Collaboration, Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications. Phys. Rev. D 88, 082002 (2013), http://link.aps.org/doi/10.1103/PhysRevD.88.082002
  43. 43.
    HESS Collaboration, Search for a dark matter annihilation signal from the Galactic Center Halo with H.E.S.S. Phys. Rev. Lett. 106(16), 161301 (2011). arXiv:1103.3266 [astro-ph.HE]

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Section de PhysiqueUniversity of GenevaGenevaSwitzerland

Personalised recommendations