Skip to main content

Introduction and Motivation for Dark Matter

  • Chapter
  • First Online:
Searching for Dark Matter with the ATLAS Detector

Part of the book series: Springer Theses ((Springer Theses))

  • 493 Accesses

Abstract

One of the largest remaining open questions in physics is the nature of DM. First postulated in the 1930s [1, 2], many independent astrophysical experiments have observed the effects of DM. Cosmology has even measured its abundance to be approximately five times that of the visible matter which makes up the universe [3], including all of the stars, planets, black holes, and other known sources of matter. However, there remains no experimentally verified theory that explains the origin of DM. While numerous experiments have been designed to search for DM, and some have claimed observations consistent with the signal expected from such a phenomenon [4], the nature of DM remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.N. Bahcall, C. Flynn, A. Gould, Local dark matter from a carefully selected sample. Astrophys. J. 389, 234–250 (1992)

    Article  ADS  Google Scholar 

  2. F. Zwicky, Die rotverschiebung von extragalaktischen nebeln. Helv. Phys. Acta 6, 110–127 (1933)

    ADS  MATH  Google Scholar 

  3. Planck Collaboration, Planck 2013 results. XV. CMB power spectra and likelihood. Astron. Astrophys. 571, A15 (2014). arXiv:1303.5075 [astro-ph.CO]

    Article  Google Scholar 

  4. DAMA Collaboration, First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 56, 333–355 (2008). arXiv:0804.2741 [astro-ph]

  5. D. Griffiths, Introduction to Elementary Particles (Wiley, London, 2008)

    MATH  Google Scholar 

  6. A. Purcell, Go on a particle quest at the first CERN webfest. Le premier webfest du CERN se lance la conqute des particules, BUL-NA-2012-269. 35/2012, Aug 2012

    Google Scholar 

  7. Particle Data Group Collaboration, K. Olive et al., Review of Particle Physics. Chin. Phys. C 38, 090001 (2014)

    Google Scholar 

  8. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview, Boulder, 1995)

    Google Scholar 

  9. Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014). arXiv:1303.5076 [astro-ph.CO]

    Article  Google Scholar 

  10. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005). arXiv:hep-ph/0404175 [hep-ph]

  11. L. Bergstrom, Nonbaryonic dark matter: observational evidence and detection methods. Rep. Prog. Phys. 63, 793 (2000). arXiv:hep-ph/0002126 [bibhep-ph]

    Article  ADS  Google Scholar 

  12. D. Hooper, TASI 2008 lectures on dark matter. Technical report, FERMILAB-CONF-09-025-A (2009). arXiv:0901.4090 [hep-ph]

  13. K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191–3203 (1991), http://link.aps.org/doi/10.1103/PhysRevD.43.3191

  14. M. Azzaro, F. Prada, C. Gutierrez, Motion properties of satellites around external spiral galaxies. ASP Conf. Ser. 327, 268 (2004). arXiv:astro-ph/0310487 [astro-ph]

    ADS  Google Scholar 

  15. H. Hoekstra, H. Yee, M. Gladders, Current status of weak gravitational lensing. New Astronon. Rev. 46, 767–781 (2002). arXiv:astro-ph/0205205 [astro-ph]

  16. K. Begeman, A. Broeils, R. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon. Not. R. Astron. Soc. 249(3), 523–537 (1991)

    Article  ADS  Google Scholar 

  17. NASA Chandra X-ray Observatory, NASA finds direct proof of dark matter, http://chandra.harvard.edu/press/06_releases/press_082106.html

  18. D. Clowe et al., A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109–L113 (2006). arXiv:astro-ph/0608407 [bibastro-ph]

  19. G.W. Angus, B. Famaey, H. Zhao, Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry. Mon. Not. R. Astron. Soc. 371, 138 (2006). arXiv:astro-ph/0606216 [astro-ph]

    Article  ADS  Google Scholar 

  20. J. Allday, Quarks, Leptons and the Big Bang (CRC Press, Boca Raton, 2012)

    Google Scholar 

  21. Planck Collaboration, Planck picture gallery, http://www.cosmos.esa.int/web/planck/picture-gallery

  22. Planck Collaboration, Planck 2013 results. I. Overview of products and scientific results. Astron. Astrophys. 571, A1 (2014). arXiv:1303.5062 [astro-ph.CO]

    Article  Google Scholar 

  23. J.L. Feng, Dark matter candidates from particle physics and methods of detection. Annu. Rev. Astron. Astrophys. 48, 495–545 (2010). arXiv:1003.0904 [astro-ph.CO]

  24. F. Arneodo, Dark matter searches. ArXiv e-prints (2013). arXiv:1301.0441 [astro-ph.IM]

  25. LUX Collaboration, First results from the LUX dark matter experiment at the Sanford Underground Research Facility. arXiv:1310.8214 [astro-ph.CO]

  26. COUPP Collaboration, First dark matter search results from a 4-kg CF\(_{3}\)I bubble chamber operated in a deep underground site. Phys. Rev. D 86(5), 052001 (2012). arXiv:1204.3094 [astro-ph.CO]

  27. C.D.M.S. Collaboration, Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111, 251301 (2013). arXiv:1304.4279 [hep-ex]

    Article  Google Scholar 

  28. CRESST-II Collaboration, Results from 730 kg days of the CRESST-II dark matter search. Eur. Phys. J. C 72, 1971 (2012). arXiv:1109.0702 [astro-ph.CO]

  29. CoGeNT Collaboration, Maximum likelihood signal extraction method applied to 3.4 years of CoGeNT data. arXiv:1401.6234 [astro-ph.CO]

  30. CoGeNT Collaboration, CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. Phys. Rev. D 88(1), 012002 (2013). arXiv:1208.5737 [astro-ph.CO]

  31. XENON100 Collaboration, Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys. Rev. Lett. 111(2), 021301 (2013). arXiv:1301.6620 [astro-ph.CO]

  32. IceCube Collaboration, Search for dark matter annihilations in the Sun with the 79-String IceCube Detector. Phys. Rev. Lett. 110, 131302 (2013), http://link.aps.org/doi/10.1103/PhysRevLett.110.131302

  33. PICASSO Collaboration, Constraints on low-mass WIMP interactions on \(^{19}\)F from PICASSO. Phys. Lett. B 711, 153–161 (2012). arXiv:1202.1240 [hep-ex]

  34. SIMPLE Collaboration, Final analysis and results of the Phase II SIMPLE dark matter search. Phys. Rev. Lett. 108(20), 201302 (2012). arXiv:1106.3014

  35. Super-Kamiokande Collaboration, An indirect search for weakly interacting massive particles in the Sun using 3109.6 days of upward-going muons in Super-Kamiokande. Astrophys. J. 742, 78 (2011). arXiv:1108.3384 [astro-ph.HE]

    Article  ADS  Google Scholar 

  36. G. Chalons, Gamma-ray lines constraints in the NMSSM. arXiv:1204.4591 [hep-ph]

  37. J. Kopp, Constraints on dark matter annihilation from AMS-02 results. Phys. Rev. D 88, 076013 (2013), http://link.aps.org/doi/10.1103/PhysRevD.88.076013

  38. A.D. Simone, A. Riotto, W. Xue, Interpretation of AMS-02 results: correlations among dark matter signals. J. Cosmol. Astropart. Phys. 05, 003 (2013), http://stacks.iop.org/1475-7516/2013/i=05/a=003

  39. AMS Collaboration, First result from the alpha magnetic spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV. Phys. Rev. Lett. 110, 141102 (2013), http://link.aps.org/doi/10.1103/PhysRevLett.110.141102

  40. Fermi-LAT Collaboration, Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope. Phys. Rev. D 89, 042001 (2014), http://link.aps.org/doi/10.1103/PhysRevD.89.042001

  41. C. Weniger, A tentative gamma-ray line from dark matter annihilation at the Fermi Large Area Telescope. J. Cosmol. Astropart. Phys. 1208, 007 (2012). arXiv:1204.2797 [hep-ph]

    Article  ADS  Google Scholar 

  42. Fermi-LAT Collaboration, Search for gamma-ray spectral lines with the Fermi Large Area Telescope and dark matter implications. Phys. Rev. D 88, 082002 (2013), http://link.aps.org/doi/10.1103/PhysRevD.88.082002

  43. HESS Collaboration, Search for a dark matter annihilation signal from the Galactic Center Halo with H.E.S.S. Phys. Rev. Lett. 106(16), 161301 (2011). arXiv:1103.3266 [astro-ph.HE]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Schramm .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schramm, S. (2017). Introduction and Motivation for Dark Matter. In: Searching for Dark Matter with the ATLAS Detector. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44453-6_1

Download citation

Publish with us

Policies and ethics