Skip to main content

Space, Time, and (How They) Matter

A Discussion of Some Metaphysical Insights about the Nature of Space and Time Provided by Our Best Fundamental Physical Theories

  • Chapter
  • First Online:
Book cover Space, Time and the Limits of Human Understanding

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 2725 Accesses

Abstract

This paper is a brief (and hopelessly incomplete) non-standard introduction to the philosophy of space and time. It is an introduction because I plan to give an overview of what I consider some of the main questions about space and time: Is space a substance over and above matter? How many dimensions does it have? Is space-time fundamental or emergent? Does time have a direction? Does time even exist? Nonetheless, this introduction is not standard because I conclude the discussion by presenting the material with an original spin, guided by a particular understanding of fundamental physical theories, the so-called primitive ontology approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert, D.Z. (2000). Time and chance. Harvard University Press.

    Google Scholar 

  2. Albert, D.Z. (2013). Wave function realism. In D. Albert, A. Ney (Eds.), The wave function: Essays in the metaphysics of quantum mechanics (pp. 52–57). Oxford University Press.

    Google Scholar 

  3. Albert, D.Z. (1996). Elementary quantum metaphysics. In J. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: an appraisal (pp. 277–284). Kluwer (1996).

    Google Scholar 

  4. Allori, V. (2015). Primitive ontology in a nutshell. International Journal of Quantum Foundations, 1(3), 107–122.

    Google Scholar 

  5. Allori, V. (2013). On the metaphysics of quantum mechanics. In S. Lebihan (Ed.), Precis de la Philosophie de la Physique. Vuibert.

    Google Scholar 

  6. Allori, V. (2013). Primitive ontology and the structure of fundamental physical theories. In D. Albert, A. Ney (Eds.), The wave function: essays in the metaphysics of quantum mechanics (pp. 58–75). Oxford University Press.

    Google Scholar 

  7. Allori, V., Goldstein, S., Tumulka, R., & Nino Zanghi, N. (2008). On the common structure of bohmian mechanics and the ghirardi-rimini-weber theory. The British Journal for the Philosophy of Science, 59(3), 353–389.

    Article  MathSciNet  MATH  Google Scholar 

  8. Allori, V., Goldstein, S., Tumulka, R., & Nino Zanghi, N. (2011). Many-Worlds and schrödinger’s first quantum theory. The British Journal for the Philosophy of Science, 62(1), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  9. Baker, D. (2010). Symmetry and the metaphysics of physics. Philosophy Compass, 5, 1157–1166.

    Article  Google Scholar 

  10. Barbour, J. (2001). The end of time: the next revolution in physics. Oxfrord University Press.

    Google Scholar 

  11. Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of hidden variables II. Physical Review, 85, 180.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Butterfield, J. (1989). The hole truth. The British Journal for the Philosophy of Science, 40, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  13. Callender, C. (2004). There is no puzzle about the low entropy past. In C. Hitchcock (Ed.), Contemporary debates in the philosophy of science, Ch 12. Blackwell.

    Google Scholar 

  14. Dasgupta, S. (2015). Substantivalism versus relationalism about space in classical physics. Philosophy Compass, 10(9), 601–624.

    Article  Google Scholar 

  15. Dawid, R. (2013). String theory and the scientific method. Cambridge University Press.

    Google Scholar 

  16. Earman, J. (2002). Thoroughly modern McTaggart: or what McTaggart would have said if he had learned general relativity. Philosophers’ Imprint, 2(3), 1–28.

    Google Scholar 

  17. Godel, K. (1949). A remark about the relationship between relativity theory and the idealistic philosophy. In P. Schilpp (Ed.), Albert Einstein. Philosopher-Scientist (pp. 557–562). Open Court.

    Google Scholar 

  18. Earman, J., & Norton, J. (1987). What price substantivalism? The hole story. The British Journal for the Philosophy of Science, 38, 515–525.

    Article  MathSciNet  Google Scholar 

  19. Everett, H. (1957). Relative state formulation of quantum mechanics. Review of Modern Physics, 29, 454–462.

    Article  ADS  MathSciNet  Google Scholar 

  20. Ghirardi, G.C., Alberto, R., & Tulio, W. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D 34, 91–470.

    Google Scholar 

  21. Goldstein, S., & S. Teufel (2001). Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity. In C. Callender & N. Huggett (Eds.), Physics meets philosophy at the planck scale (pp. 275–289). Cambridge University Press.

    Google Scholar 

  22. Healey, R. (2002). Can physics coherently deny the reality of time?. In C. Callender (Ed.), Time, reality and experience (pp. 293–316). Cambridge University Press.

    Google Scholar 

  23. Huggett, N., Tiziana, V., & Christian W. (2012). Time in quantum gravity. In A. Bardon, & H. Dyke (Eds.), The Blackwell companion to the philosophy of time (pp. 242–261). Blackwell.

    Google Scholar 

  24. Huggett, N., & Wuthrich, C. (2013). Emergent spacetime and empirical (In)coherence. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 44(3), 276–285. 25.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kuchar, K. (1992). Time and interpretations of quantum gravity. Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, 211–314.

    Google Scholar 

  26. Lewis, P. (2004). Life in configuration space. The British Journal for the Philosophy of Science, 55(4), 713–729.

    Article  MathSciNet  Google Scholar 

  27. Maudlin, T. (1990). Substances and space-time: what aristotle would have said to Einstein. Studies in History and Philosophy of Science Part A, 21, 531–561.

    Article  MathSciNet  Google Scholar 

  28. Maudlin, T. (2002). Remarks on the passing of time. Proceedings of the Aristotelian Society New Series, 102, 259–274.

    Google Scholar 

  29. Maudlin, T. (2002). Thoroughly muddled McTaggart: or how to abuse gauge freedom to generate metaphysical monstrosities. Philosophers’ Imprint, 2(4), 1–13.

    Google Scholar 

  30. Maudlin, T. (2007). Completeness, supervenience and ontology. Journal of Physics A: Mathematical and Theoretical, 40, 3151–3171.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Monton, B. (2002). Wave function ontology. Synthese, 130, 265–277.

    Article  MathSciNet  MATH  Google Scholar 

  32. Myrvold, W. (2015). What is a wave function? Synthese, 192(10), 3247–3274.

    Article  MathSciNet  Google Scholar 

  33. Ney, A. (2012). The status of our ordinary three dimensions in a quantum universe. Nous, 46(3), 525–560.

    Article  MathSciNet  Google Scholar 

  34. Ney, A. (2013). Introduction. In D. Albert, A. Ney (Eds.), The wave function: essays in the metaphysics of quantum mechanics (pp. 51–51). Oxford University Press.

    Google Scholar 

  35. Ney, A. (2015). Fundamental physical ontologies and the constraint of empirical coherence: a defense of wave function realism. Synthese, 192(10), 3105–3124.

    Article  MathSciNet  Google Scholar 

  36. Ney, A. Finding the world in the wave function: some strategies for solving the macro-problem. Synthese (forthcoming).

    Google Scholar 

  37. North, J. (2009). The structure of physics: a case study. The Journal of Philosophy, 106, 57–88.

    Article  Google Scholar 

  38. North, J. (2011). Time in thermodynamics. In C. Callender (Ed.), The oxford handbook of philosophy of time (pp. 312–350). Oxford University Press (2011).

    Google Scholar 

  39. North, J (2013). The structure of a quantum world. In D. Albert, & A. Ney (Eds.), The wave function: essays on the metaphysics of quantum mechanics (pp. 184–202). Oxford University Press.

    Google Scholar 

  40. Pooley, O. (2013). Substantivalist and relationalist approaches to spacetime. In R. Batterman (Ed.), the oxford handbook of philosophy of physics (pp. 522–586). Oxford University Press (2013).

    Google Scholar 

  41. Price, H. (2004). On the origins of the arrow of time: why there is still a puzzle about the low entropy past. In C. Hitchcock (ed.), Contemporary debates in the philosophy of science, Ch 12. Blackwell.

    Google Scholar 

  42. Rickles, D. (2013). Mirror symmetry and other miracles in superstring theory. Foundations of Physics, 43(1), 54–80.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Rovelli, C. (2011). Forget time. Foundations of Physics, 41, 1475–1490.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Stachel, J. (1989). Einstein’s search for general covariance. In D. Howard, & J. Stachel (eds.), Einstein and the history of general relativity. (pp. 63–100). Birkhäuser.

    Google Scholar 

  45. Zimmerman, D. (2007). In T. Sider, J. Hawthorn, & D. Zimmerman (Eds.) Contemporary debates in metaphysics (pp. 211–225). Blackwell.

    Google Scholar 

  46. Wallace, D., & Timpson, C. (2010). Quantum mechanics on spacetime I: Spacetime state realism. The British Journal for the Philosophy of Science, 61(4), 697–727.

    Article  MathSciNet  MATH  Google Scholar 

  47. Wheeler, J. A.: Time today. In J. Halliwell, J. Perez-Mercader & W. H. Zurek (Eds.), Physical Origins of Time Asymmetry (pp. 1–29). Cambridge University Press (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valia Allori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Allori, V. (2017). Space, Time, and (How They) Matter. In: Wuppuluri, S., Ghirardi, G. (eds) Space, Time and the Limits of Human Understanding. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-44418-5_8

Download citation

Publish with us

Policies and ethics