Skip to main content

The Geometry of Manifolds and the Perception of Space

  • Chapter
  • First Online:
Space, Time and the Limits of Human Understanding

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 2701 Accesses

Abstract

In our contemporary world, we see ourselves immersed in a vast universe filled with galaxies, black holes, dark matter and other aspects of our cosmological surroundings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbott, B. P., et al. (2016). Observation of gravitational waves from a binary black hole merger. Physical Review Letters, 116, 061102–1–061102–15.

    Google Scholar 

  2. Betti, E. (1871). Sopra gli spazi di un numero qualunque di dimensioni. Annali di Matematica Pura ed Applicata, 4, 140–158.

    Article  MATH  Google Scholar 

  3. Cantor, G. (1874). Ueber eine Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen. Journal fur die reine und angewandte Mathematik, 77, 258–262.

    Google Scholar 

  4. Cantor, G. (1932). In Zermelo, E. (Ed.), Gesammelte Abhandlungen. Berlin: Springer.

    Google Scholar 

  5. de Clairaut, A. C. (1731). Recherche sur les courbe à double courbure. Nyons.

    Google Scholar 

  6. Descartes, R. (1886). La Géométrie. Paris: Hermann. Cornell University Library Digital Collections, first published in 1637.

    Google Scholar 

  7. Eddington, A. S., Dyson, F. W., & Davidson, C. (1920). A determination of the deflection of light by the Sun’s gravitational field, from observations made at the solar eclipse of May 29, 1919. Philosophical Transactions of the Royal Society of London, 220, 291–333.

    Google Scholar 

  8. Einstein, A. (1916). Die Grundlage der allgemein Relativitätstheorie. Annlen der Physik, 49, 769–822.

    Article  ADS  MATH  Google Scholar 

  9. Euler, L. (1767). Recherches sur la courbure des surfaces. In Memoires de l’academie des sciences de Berlin, 16, 119–143.

    Google Scholar 

  10. Fréchet, M. (1906). Sur quelques points du calcul fonctionnel. Rendiconti del Circolo Matematico di Palermo, 22, 1–72.

    Google Scholar 

  11. Frenet, F. (1852). Sur les courbes à double courbure. Journal de Mathématiques Pures et Appliquées, 17, 437–447.

    Google Scholar 

  12. Gauss, C. F. (1863). Disquisitiones arithmeticae. In Gauss Werke (Vol. 1, pp. 1–478).

    Google Scholar 

  13. Gauss, C. F. (1863). Theoria residuorum biquadraticorum, commentatio secunda. In Gauss Werke, (Vol. 2, pp. 169–178). Königlichen Gesellschaft der Wissenschaften, Göttingen, in German (Latin title), originally published in Göttingsche Gelehrte Anzeige, 1831, V. 1. Apr., 23, 625–638.

    Google Scholar 

  14. Gauss, C. F. (1873). Anzeige: Disquisitiones generales circa superficies curvas. In Gauss Werke, (Vol. 4, pp. 341–352). Göttingen: Königlichen Gesellschaft der Wissenschaften.

    Google Scholar 

  15. Gauss, C. F. (1873). Disquisitiones generales circa superficies curvas. In Gauss Werke (Vol. 4, pp. 217–258). Göttingen: Königlichen Gesellschaft der Wissenschaften. Originally published Commentationes Societatis Regiae Scientiaarum Gottingensis recentiores, Vol. VI,1828, pp 99-146.

    Google Scholar 

  16. Hausdorff, F. (1914). Grundzüge der Mengenlehre. Leipzig: Veit. later editions: 1927, 1935, de Gruyter; English translation editions (Set Theory): 1957, 1962, Chlesea.

    Google Scholar 

  17. Heath, T. L. (1956). The Thirteen Books of Euclid’s Elements (Vols. 3, 2nd edn.). New York: Dover.

    Google Scholar 

  18. Heath, T. L. (1896). Apollonius. Cambridge: Treatise on Conic Sections.

    Google Scholar 

  19. Huygens, C. (1673). Horologium Oscillatorium. Paris: Muget. Translation into English online by Ian Bruce at www.17centurymaths.com.

  20. Klein, F. (1928). In Rosemann, W. (Ed.), Vorlesungen über Nicht-Euklidische Geometrie. Berlin: Julius Springer.

    Google Scholar 

  21. Kline, M. (1972). Mathematical thought from ancient to modern times. New York: Oxford University Press.

    MATH  Google Scholar 

  22. Leibniz, G. W. (1684). Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas, nec irrationales quantitates moratur. In Acta Eruditorum (pp. 467–473).

    Google Scholar 

  23. Newton, I. (1736). The method of fluxions and infinite series. London: Henry Woodfall. Translated by John Colson from unpublished Latin ms of Newton (Methodus Fluxionum et Serierum Infinitarum) from 1671; download available from http://www.archive.org/details/methodoffluxions00newt.

  24. Poincaré, H. (2010). Papers on topology; Analysis situs and its five supplements. American Mathematical Society Providence, RI. Translation by John Stillwell.

    Google Scholar 

  25. Poincaré, H. (1895). Analysis situs. Journal de l’École Polytechnique, 1, 1–121.

    Google Scholar 

  26. Poincaré, H. (1953). Oeuvres de Henri Poincaré. Paris: Tome VI. Gauthiers-Villars.

    Google Scholar 

  27. Resnikoff, H. L., Wells, R. O. (2015). Mathematics in Civilization (3rd edn.) New York: Dover.

    Google Scholar 

  28. Riemann, B. (1876). Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen complexen Grösse. In H. Weber (Ed.) Gesammelte Mathematische Werke (pp. 3–47). Leipzig: Teubner. Inaugural Dissertation, Göttingen, 1851.

    Google Scholar 

  29. Riemann, B. (1876). In H. Weber (Ed.) Gesammelte Mathematische Werke. Leipzig: B. G. Teubner. 1990 edition with addtional notes from numerous commentators on Riemann’s work was published by Springer and edited by R. Narasimhan.

    Google Scholar 

  30. Riemann, B. (1876). Theorie der Abel’sche Functionen. In H. Weber, editor, Gesammelte Mathematische Werke (pp. 81–135). Leipzig: Teubner. This paper in Riemann’s Werke combines four paper from the Journal für reine und angewandte Mathematik, Vol. 54, 1857.

    Google Scholar 

  31. Riemann, B. (1876). Ueber die Hypothesen, welche der Geometrie zu Grunde liegen. In Gesammelte Mathematisch Werke (Chapter XIII, pp. 254–269). Leipzig: B. G. Teubner.

    Google Scholar 

  32. Serret, J. A. (1851). Sur quelques formules relatives à la théorie des courbes à double courbure. Journal de Mathématiques Pures et Appliquées, 16, 193–207.

    Google Scholar 

  33. Weyl, H. (1913). Die Idee der Riemannschen Fläche. Leipzig: B. G. Teubner.

    MATH  Google Scholar 

  34. Weyl, H. (1919). Raum, Zeit, Materie: Vorlesungen über allgemeine Relatvitätstheorie. Berlin: Springer-Verlag.

    Book  MATH  Google Scholar 

  35. Yau, S.-T., & Nadis, S. (2011). Geometry of the universe’s hidden dimensions notices. American Mathematical Society, 58, 1067–1076.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond O. Wells Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wells Jr., R.O. (2017). The Geometry of Manifolds and the Perception of Space. In: Wuppuluri, S., Ghirardi, G. (eds) Space, Time and the Limits of Human Understanding. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-44418-5_19

Download citation

Publish with us

Policies and ethics