Skip to main content

Monitoring Short Term Changes of Infectious Diseases in Uganda with Gaussian Processes

  • Conference paper
  • First Online:
Book cover Advanced Analysis and Learning on Temporal Data (AALTD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9785))

  • 773 Accesses

Abstract

A method to monitor infectious diseases based on health records is proposed. Infectious diseases, specially Malaria, are a constant threat for Ugandan public health. The method is applied to health facility records of Malaria in Uganda. The first challenge to overcome is the noise introduced by missing reports of the health facilities. We use Gaussian processes with vector-valued kernels to estimate the missing values in the time series. Later on, for aggregate data at a District level, we use a combination of kernels to decompose the case-counts time series into short and long term components. This method allows not only to remove the effect of specific components, but to study the components of interest with more detail. The short term variations of an infection are divided into four cyclical stages. The progress of an infection across the population can be easily analysed and compared between different Districts. The graphical tool provided can help quick response planning and resources allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Such a task would require the use of a periodic kernel, which is able to learn a sinusoidal pattern. A periodic kernel does not impose any additional complication for learning the model. Nevertheless, we decided no to use it to show the capabilities of the vector-valued kernel regression.

  2. 2.

    An alternative is to include information about weather conditions in the estimates. That approach deserves a much broader discussion and falls out of the scope of this work.

  3. 3.

    Being more specific, the effect should be similar in those health facilities that are dedicated to treat the disease in question.

  4. 4.

    The number of health facilities was around four thousand in the sample of information used.

  5. 5.

    We did not have the spatial location for some health facilities. These facilities were assigned randomly to different clusters.

  6. 6.

    This model was implemented by using a GP with a bias kernel.

  7. 7.

    Even when we limited the study to health facilities with at least 8 observations, some health facilities did not have enough information to fit a model adequately.

References

  1. Álvarez, M., Rosasco, L., Lawrence, N.D.: Kernels for vector-valued functions: a review. Found. Trends Mach. Learn. 4(3), 195–266 (2012)

    Article  MATH  Google Scholar 

  2. Baldassarre, L., Rosasco, L., Barla, A., Verri, A.: Multi-output learning via spectral filtering. Mach. Learn. 87(3), 259–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baxter, M., King, R.G.: Measuring business cycles: approximate band-pass filters for economic time series. Rev. Econ. Stat. 81(4), 575–593 (1999)

    Article  Google Scholar 

  4. Bhatt, S., Weiss, D., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., Battle, K., Moyes, C., Henry, A., Eckhoff, P., et al.: The effect of malaria control on plasmodium falciparum in Africa between 2000 and 2015. Nature 526(7572), 207–211 (2015)

    Article  Google Scholar 

  5. Cleveland, W.P., Tiao, G.C.: Decomposition of seasonal time series: a model for the census X-11 program. J. Am. Stat. Assoc. 71(355), 581–587 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Diggle, P.J., Moraga, P., Rowlingson, B., Taylor, B.M., et al.: Spatial and spatio-temporal log-Gaussian Cox processes: extending the geostatistical paradigm. Stat. Sci. 28(4), 542–563 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diggle, P.J., Tawn, J., Moyeed, R.: Model-based geostatistics. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 47(3), 299–350 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Durrande, N., Hensman, J., Rattray, M., Lawrence, N.D.: Gaussian process models for periodicity detection (2013). arXiv:1303.7090

  9. Goldberg, P.W., Williams, C.K.I., Bishop, C.M.: Regression with input-dependent noise: a Gaussian process treatment. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information Processing Systems, vol. 10, pp. 493–499. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Hay, S.I., Snow, R.W., Rogers, D.J.: From predicting mosquito habitat to malaria seasons using remotely sensed data: practice, problems and perspectives. Parasitol. Today 14(8), 306–313 (1998)

    Article  Google Scholar 

  11. Helterbrand, J.D., Cressie, N.: Universal cokriging under intrinsic coregionalization. Math. Geol. 26(2), 205–226 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hyvärinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Netw. 13(4), 411–430 (2000)

    Article  Google Scholar 

  13. Lázaro-Gredilla, M., Titsias, M.: Variational heteroscedastic Gaussian process regression. In: Getoor, L., Scheffer, T. (eds.) Proceedings of the International Conference in Machine Learning, vol. 28, pp. 841–848. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  14. Matheron, G.: Pour une analyse krigeante de donnés régionalisées. Technical report, École des Mines de Paris, Fontainebleau, France (1982)

    Google Scholar 

  15. Micchelli, C.A., Pontil, M.: Kernels for multi-task learning. In: Advances in Neural Information Processing Systems (NIPS). MIT Press (2004)

    Google Scholar 

  16. Micchelli, C.A., Pontil, M.: On learning vector-valued functions. Neural Comput. 17, 177–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Myers, D.E.: Matrix formulation of co-kriging. J. Int. Assoc. Math. Geol. 14(3), 249–257 (1982)

    Article  MathSciNet  Google Scholar 

  18. Parzen, E.: An approach to time series analysis. Ann. Math. Stat. 32, 951–989 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Parzen, E.: Statistical inference on time series by RKHS methods. In: Pyke, R. (ed.) 12th Biennial Seminar, pp. 1–37. Canadian Mathematical Congress (1970)

    Google Scholar 

  20. Quenouille, H.: The Analysis of Multiple Time-Series (Griffin’s Statistical Monographs & Courses). Griffin, London (1957)

    Google Scholar 

  21. Quiñonero Candela, J., Rasmussen, C.E.: A unifying view of sparse approximate Gaussian process regression. J. Mach. Learn. Res. 6, 1939–1959 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Särkkä, S.: Linear operators and stochastic partial differential equations in Gaussian process regression. In: Honkela, T. (ed.) ICANN 2011, Part II. LNCS, vol. 6792, pp. 151–158. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  24. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: Weiss, Y., Schölkopf, B., Platt, J.C. (eds.) Advances in Neural Information Processing Systems, vol. 18. MIT Press, Cambridge (2006)

    Google Scholar 

  25. The GPy authors. GPy: A Gaussian process framework in Python, 2012–2015. http://github.com/SheffieldML/GPy

  26. Titsias, M.K.: Variational learning of inducing variables in sparse Gaussian processes. In: van Dyk, D., Welling, M. (eds.) Proceedings of the Twelfth International Workshop on Artificial Intelligence and Statistics, JMLR W & CP, Clearwater Beach, FL, 16–18 April 2009, vol. 5, pp. 567–574 (2009)

    Google Scholar 

  27. Tolvanen, V., Jylanki, P., Vehtari, A.: Expectation propagation for nonstationary heteroscedastic Gaussian process regression. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2014)

    Google Scholar 

  28. van Ruth, F., Schouten, B., Wekker, R.: The statistics Netherlands business cycle tracer. Methodological aspects; concept, cycle computation and indicator selection. Technical report, Statistics Netherlands (2005)

    Google Scholar 

  29. Vehtari, A., Ojanen, J., et al.: A survey of Bayesian predictive methods for model assessment, selection and comparison. Stat. Surv. 6, 142–228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Vehtari, A., Tolvanen, V., Mononen, T., Winther, O.: Bayesian leave-one-out cross-validation approximations for Gaussian latent variable models (2014). arXiv:1412.7461

  31. Williams, C.K.I., Rasmussen, C.E.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  32. World Health Organization. World health statistics. Technical report. WHO Press, Geneva (2015)

    Google Scholar 

  33. Wu, Y., Hernández-Lobato, J.M., Ghahramani, Z.: Gaussian process volatility model. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, Cambridge, MA, vol. 27, pp. 1044–1052 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Andrade-Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Andrade-Pacheco, R., Mubangizi, M., Quinn, J., Lawrence, N. (2016). Monitoring Short Term Changes of Infectious Diseases in Uganda with Gaussian Processes. In: Douzal-Chouakria, A., Vilar, J., Marteau, PF. (eds) Advanced Analysis and Learning on Temporal Data. AALTD 2015. Lecture Notes in Computer Science(), vol 9785. Springer, Cham. https://doi.org/10.1007/978-3-319-44412-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44412-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44411-6

  • Online ISBN: 978-3-319-44412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics