Skip to main content

Dimension Reduction in Dissimilarity Spaces for Time Series Classification

  • Conference paper
  • First Online:
Advanced Analysis and Learning on Temporal Data (AALTD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9785))

Abstract

Time series classification in the dissimilarity space combines the advantages of elastic dissimilarity functions such as the dynamic time warping distance and the rich mathematical structure of Euclidean spaces. We applied dimension reduction using PCA followed by support vector learning on dissimilarity representations to 42 UCR datasets. The results suggest that time series classification in dissimilarity space has potential to complement the state-of-the-art, because the SVM classifiers perform better on the 42 datasets with higher confidence than the nearest-neighbor classifier based on the dynamic time warping distance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batista, G.E., Wang, X., Keogh, E.J.: A complexity-invariant distance measure for time series. In: SIAM International Conference on Data Mining, vol. 11, pp. 699–710 (2011)

    Google Scholar 

  2. Boser, B.E., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152 (1992)

    Google Scholar 

  3. Bunke, H., Riesen, K.: Graph classification based on dissimilarity space embedding. In: da Vitoria Lobo, N., Kasparis, T., Roli, F., Kwok, J.T., Georgiopoulos, M., Anagnostopoulos, G.C., Loog, M. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 5342, pp. 996–1007. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  4. Cao, L.J., Chua, K.S., Chong, W.K., Lee, H.P., Gu, Q.M.: A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine. Neurocomputing 55(1–2), 321–336 (2003)

    Google Scholar 

  5. Chen, Y., Garcia, E., Gupta, M., Rahimi, A., Cazzanti, L.: Similarity-based classification: concepts and algorithms. J. Mach. Learn. Res. 10, 747–776 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector network. Mach. Learn. 20, 273–297 (1995)

    MATH  Google Scholar 

  7. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duin, R., de Ridder, D., Tax, D.: Experiments with object based discriminant functions; a featureless approach to pattern recognition. Pattern Recogn. Lett. 18(11–13), 1159–1166 (1997)

    Article  Google Scholar 

  9. Duin, R.P.W., Pekalska, E.: The dissimilarity space: bridging structural and statistical pattern recognition. Pattern Recogn. Lett. 33(7), 807–962 (2012)

    Article  Google Scholar 

  10. Fu, T.: A review on time series data mining. Eng. Appl. Artif. Intell. 24(1), 164–181 (2011)

    Article  Google Scholar 

  11. Geibel, P., Jain, B., Wysotzki, F.: SVM learning with the SH inner product. In: European Symposium on Artificial Neural Networks (2004)

    Google Scholar 

  12. Geurts, P.: Pattern extraction for time series classification. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: Advances in Neural Information Processing Systems (1999)

    Google Scholar 

  14. Graepel, T., Herbrich, R., Schölkopf, B., Smola, A., Bartlett, P., Müller, K.-R., Obermayer, K., Williamson, R.: Classification on proximity data with LP-machines. In: International Conference on Artificial Neural Networks (1999)

    Google Scholar 

  15. Gudmundsson, S., Runarsson, T.P., Sigurdsson, S.: Support vector machines and dynamic time warping for time series. In: Joint Conference on Neural Networks (2008)

    Google Scholar 

  16. Haasdonk, H., Burkhardt, B.: Invariant kernels for pattern analysis and machine learning. Mach. Learn. 68, 35–61 (2007)

    Article  Google Scholar 

  17. Hochreiter, S., Obermayer, K.: Support vector machines for dyadic data. Neural Comput. 18(6), 1472–1510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jain, B.J., Geibel, P., Wysotzki, F.: SVM learning with the Schur? Hadamard inner product for graphs. Neurocomputing 64, 93–105 (2005)

    Article  Google Scholar 

  19. Jain, B.J., Spiegel, S.: Time series classification in dissimilarity spaces. In: Proceedings of the 1st International Workshop on Advanced Analytics and Learning on Temporal Data (2015)

    Google Scholar 

  20. Jain, B.J.: Generalized gradient learning on time series. Mach. Learn. 100(2), 587–608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kate, R.J.: Using dynamic time warping distances as features for improved time series classification. Data Min. Knowl. Discov. 30(2), 283–312 (2016)

    Article  MathSciNet  Google Scholar 

  22. Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.A.: The UCR Time Series Classification/Clustering Homepage (2011). www.cs.ucr.edu/~eamonn/time_series_data/

  23. Laub, J., Müller, K.R.: Feature discovery in non-metric pairwise data. J. Mach. Learn. Res. 5, 801–818 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  25. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Discov. 29(3), 565–592 (2015)

    Article  MathSciNet  Google Scholar 

  26. Livi, L., Rizzi, A., Sadeghian, A.: Optimized dissimilarity space embedding for labeled graphs. Inf. Sci. 266, 47–64 (2014)

    Article  MathSciNet  Google Scholar 

  27. Ong, C., Mary, X., Canu, S., Smola, A.J.: Learning with non-positive kernels. In: International Conference on Machine Learning (2004)

    Google Scholar 

  28. Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. World Scientific, River Edge (2005)

    MATH  Google Scholar 

  29. Pekalska, E., Duin, R.P.W., Paclik, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recogn. 39(2), 189–208 (2006)

    Article  MATH  Google Scholar 

  30. Petitjean, F., Ketterlin, A., Gançarski, P.: A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn. 44(3), 678–693 (2011)

    Article  MATH  Google Scholar 

  31. Riesen, K., Neuhaus, M., Bunke, H.: Graph embedding in vector spaces by means of prototype selection. In: Escolano, F., Vento, M. (eds.) GbRPR. LNCS, vol. 4538, pp. 383–393. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  32. Riesen, K., Bunke, H.: Graph classification based on vector space embedding. Int. J. Pattern Recogn. Artif. Intell. 23(6), 1053–1081 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Spillmann, B., Neuhaus, M., Bunke, H., Pękalska, E., Duin, R.P.W.: Transforming strings to vector spaces using prototype selection. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) Structural, Syntactic, and Statistical Pattern Recognition. LNCS, vol. 4109, pp. 287–296. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  34. Subasi, A., Gursoy, M.I.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010)

    Article  Google Scholar 

  35. Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.A.: Fast time series classification using numerosity reduction. In: International Conference on Machine Learning (2006)

    Google Scholar 

  36. Xing, Z., Pei, J., Keogh, E.: A brief survey on sequence classification. ACM SIGKDD Explor. Newslett. 12(1), 40–48 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

B. Jain was funded by the DFG Sachbeihilfe JA 2109/4-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijnesh Jain .

Editor information

Editors and Affiliations

A Performance Profiles

A Performance Profiles

Performance profiles have been introduced by Dolan to compare the efficiency of algorithms [7]. Here, we use performance profiles to compare differences in the classification accuracy of a collection of classifiers on a set of classification problems. The comparison is summarized by one curve per classifier, which is easier to read than a table of classification accuracies.

To define a performance profile, we assume that \(\mathbb {C}\) is a set of classifiers to be compared and \(\mathbb {P}\) is the set of all classification problems. For each classification problem \(p \in \mathbb {P}\) and each classifier \(c \in \mathbb {C}\), we define

$$ \rho _{c,p} = \text {accuracy of classifier } c \in \mathbb {C} \text { on problem } p \in \mathbb {P} $$

as the performance of classifier c for problem p. In performance profiles, we do not consider the absolute performance of a classifier in terms of its classification accuracy, but its relative performance with respect to the best performing classifier. The classifier with the best performance on problem p has classification accuracy

$$ \rho _p^* = \max \mathop {\left\{ \rho _{\kappa , p} \,:\, \kappa \in \mathbb {C} \right\} }. $$

Then the relative performance of classifier c on problem p is given by

$$ r_{c, p} = 1-\frac{\rho _{c, p}}{\rho _p^*}. $$

The relative performance \(r_{c, p}\) takes values from the interval [0, 1]. The better the performance of a classifier for a given problem, the lower is its relative performance. Thus, the lower the relative performance, the better the classifier. Moreover, from

$$ r_{c, p} \cdot \rho _p^* = \mathop {\left( 1-\frac{\rho _{c, p}}{\rho _p^*} \right) }\rho _p^* = \rho _p^* -\rho _{c, p} $$

follows that \(r_{c,p}\) is the factor by which the classification accuracy \(\rho _{c,p}\) deviates from the best classification accuracy \(\rho _p^*\).

Finally, the performance profile of classifier \(c \in \mathbb {C}\) over all problems \(p \in \mathbb {P}\) is an empirical cumulative distribution function

$$ P_c(\tau ) = \frac{1}{\mathop {\left|\mathbb {P} \right|}} \mathop {\left|\mathop {\left\{ p \in \mathbb {P} \,:\, r_{c, p} \le \tau \right\} } \right|}. $$

It is sufficient to keep three three facts in mind to interpret performance profiles:

  1. 1.

    The value \(P_c(0)\) is the fraction of problems on which classifier c is best.

  2. 2.

    \(P_c(\tau )\) is the fraction of problems on which the performance of classifier c deviates at most by factor \(\tau \) from the best performance.

  3. 3.

    \(\tau _{\max }\) with \(P_c(\tau _{\max }) = 1\) is the maximum factor by which classifier c deviates from the best performance.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Jain, B., Spiegel, S. (2016). Dimension Reduction in Dissimilarity Spaces for Time Series Classification. In: Douzal-Chouakria, A., Vilar, J., Marteau, PF. (eds) Advanced Analysis and Learning on Temporal Data. AALTD 2015. Lecture Notes in Computer Science(), vol 9785. Springer, Cham. https://doi.org/10.1007/978-3-319-44412-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44412-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44411-6

  • Online ISBN: 978-3-319-44412-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics