Skip to main content

Application of Bacillus spp. for Sustainable Cultivation of Potato (Solanum tuberosum L.) and the Benefits

  • Chapter
  • First Online:

Abstract

Potato is a staple crop in 130 countries worldwide, ranking fourth in production after rice, maize, and wheat. It is also an important crop which holds promise for food to millions of people especially in developing countries. But the production of potato is hindered by many phytopathogenic fungal and bacterial diseases that cause considerable loss to potato production in field. Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and induce an increase in plants growth. Among the mechanisms by which PGPR exert beneficial effects on plants are facilitating the uptake of nutrients such as phosphorus via phosphate solubilization, synthesizing stimulatory phytohormones like indole-3-acetic acid (IAA). Bacillus is one of the most commonly reported PGPR genera, as it has the advantage of being able to form endospores which confers them high stability as biofertilizers or biofungicides, which are resistant to heat, desiccation, organic solvents, and UV irradiation, and to produce various biologically active metabolites in addition to their abundance in soil. The ability to produce cell wall-degrading enzymes like protease, chitinase, and ß-1,3-glucanase and the production of secondary metabolites such as siderophore are other important criteria for understanding the mechanism responsible for biological control attributes of these organisms. Other mechanisms like competition for nutrients and induction of systemic resistance in plants are also involved. In spite of the benefits, application of Bacillus in potato cultivation is not well established. In this article, application of Bacillus for the management of potato diseases, and other benefits with potential for use in the future to improve potato crop, has been discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbas, M. T., Hamza, M. A., Youssef, H. H., Youssef, G. H., Fayez, M., Monib, M., & Hegazi, N. A. (2013) Bio-preparates support the productivity of potato plants grown under desert farming conditions of north Sinai: Five years of field trials. Journal of Advanced Research. Cairo University.

    Google Scholar 

  • Abd-El-Khair, H., & Karima, H. E. H. (2007). Application of some bactericides and bioagents for controlling the soft rot disease in potato. Research Journal Agricultural Biological Science, 3, 463–473.

    Google Scholar 

  • Adesina, M. F., Lembke, A., Costa, R., Speksnijder, A., & Smalla, K. (2007). Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: Site-dependent composition and diversity revealed. Soil Biology and Biochemistry, 39, 2818–2828.

    Article  CAS  Google Scholar 

  • Ahmad, F., Ahmad, I., & Khan, M. S. (2008). Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research, 163, 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Akhavan, S. A., Selselezakeri, S. H., Rezapanah, M. R., & Motevaze, K. (2007). An investigation on activity and compounds of Bacillus subtilis against some pathogenic plant fungi. Iranian Journal Biological Sciences, 2, 1–14.

    Google Scholar 

  • Akhtar, M. S., Shakeel, U., & Siddiqui, Z. A. (2010). Biocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes and Rhizobium sp. on lentil. Turkish Journal of Biology, 3, 1–7.

    Google Scholar 

  • Alabouvette, C., Olivain, C., & Steinberg, C. (2006). Biological control of plant diseases: The European situation. European Journal of Plant Pathology, 114, 329–341.

    Article  Google Scholar 

  • Aliye, N., Fininsa, C., & Hiskias, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control, 47, 282–288.

    Article  Google Scholar 

  • Alstrom, S., & Burns, R. G. (1989). Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biology and Fertility of Soils, 7, 232–238.

    Article  Google Scholar 

  • Andreote, F. D., Rocha, U. N., Araujo, W. L., Azevedo, J. L., & Overbreek, L. S. V. (2010). Effect of bacterial inoculation, plant genotype and developmental stage on root-associated and endophytic bacterial communities in potato (Solanumtuberosum). Antonie van Leeuwenhoek, 97, 389–399.

    Article  PubMed  PubMed Central  Google Scholar 

  • Antoun, H., & Prevost, D. (2006). Ecology of plant growth promoting rhizobacteria. In Z. A. Siddiqui (Ed.), PGPR: Biocontrol and biofertilization (pp. 1–38). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Aranda, F. J., et al. (2005). Further aspects on the hemolytic activity of the antibiotic lipopeptide iturin A. Biochimica et Biophysica Acta, 1713, 51–56.

    Article  CAS  PubMed  Google Scholar 

  • Ariffin, H., Abdullah, N., Umi, K., Shirai, Y., & Hassan, M. A. (2006). Production and characterization by Bacillus pumilus EB3. International Journal of Engineering and Technology, 3, 47–53.

    Google Scholar 

  • Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62, 4081–4085.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3Biotech, 4(2), 127–136. doi:10.1007/s13205-013-0134-4.

    Google Scholar 

  • Aspiras, R. B., & Cruz, A. R. D. (1986). Biocontrol of bacterial wilt in tomato and potato through pre–emptive colonisation using Bacillus polymyxa FU6 and Pseudomonas fluorescens. Philippine Journal Crop Science, 11(1), 1–4.

    Google Scholar 

  • Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Baker, R. (1990). An overview of current and future strategies and model for biological control. In Hornby, Involvement of secondary metabolites and extracellular lytic enzymes 79 D. (Ed.) (Biological control of soil-borne plant pathogens, pp 375–388). Wallingford: CAB International.

    Google Scholar 

  • Bakker, P. A. H. M., Pieterse, C. M. J., & van Loon, L. C. (2007). Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology, 97, 239–243.

    Google Scholar 

  • Bargabus, R. L., Zidack, N. K., Sherwood, J. E., & Jacobsen, B. J. (2002). Characterization of systemic resistance in sugarbeet elicited by a non pathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiology and Molecular Plant Pathology, 61, 289–298.

    Article  CAS  Google Scholar 

  • Basha, S., & Ulaganathan, K. (2002). Antagonism of Bacillus species (strain BC 121) towards Curvularia lunata. Current Science, 82, 1457–1463.

    CAS  Google Scholar 

  • Bonmatin, J. M., et al. (2003). Diversity among microbial cyclic lipopeptides: Iturins and surfactins. Activity-structure relationships to design new bioactive agents. Combinatorial Chemistry & High Throughput Screening, 6, 541–556.

    Article  CAS  Google Scholar 

  • Boyd, A. E. W. (1972). Potato storage diseases. Review of Plant Pathology, 51, 297–321.

    Google Scholar 

  • Brewer, M. T., & Larkin, R. P. (2005). Efficacy of several potential biocontrol organisms against Rhizoctonia solani on potato. Crop Protection, 24, 939–950.

    Article  Google Scholar 

  • Calvo, P., Ormeno-Orrill, E., Martinez-Romer, E., & Zuniga, D. (2010). Characterization of Bacillus isolates of potato rhizosphere from Andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology, 41, 899–906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawoy, H., Bettiol, W., Fickers, P., & Ongena, M. (2011). Bacillus-based biological control of plant diseases, pesticides in the modern world – pesticides use and management, Dr. Margarita Stoytcheva (Ed.), ISBN: 978-953-307-459-7, InTech. Available from: http://www.intechopen.com/books/pesticides-in-themodern-world-pesticides-use-and-management/bacillus-based-biological-control-of-plant-diseases

  • Cazorla, F. M., Romero, D., Pérez-García, A., Lugtenberg, B. J., Vicente, A., & Bloemberg, G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal of Applied Microbiology, 103, 1950–1959.

    Article  CAS  PubMed  Google Scholar 

  • Chernin, L., & Chet, I. (2002). Microbial enzymes in biocontrol of plant pathogens and pests. In R. Burns & R. Dick (Eds.), Enzymes in the environment: Activity, ecology, and applications (pp. 171–225). New York: Marcel Dekker.

    Google Scholar 

  • Choudhary, D. K., Prakash, A., & Johri, B. N. (2007). Induced systemic resistance (ISR) in plants: Mechanism of action. Indian Journal of Microbiology, 47, 289–297.

    Article  CAS  PubMed  Google Scholar 

  • Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S. D., et al. (2008). Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Applied Microbiology and Biotechnology, 80(1), 115–123.

    Article  CAS  PubMed  Google Scholar 

  • Cohen, Y., Gisi, U., & Niderman, T. (1993). Local and systemic protection against Phytophthora infestans induced in potato and tomato plants by jasmonic acid and jasmonic methyl ester. Phytopathology, 83(10), 1054–1052.

    Article  CAS  Google Scholar 

  • Compant, S., Duffy, B., Nowak, J., Clemen, C., & Barka, E. A. (2005). Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology, 71, 4951–4959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath, U., Beckers, G. J. M., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M. J., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L., Mauch-Mani, B., & Prime, A. (2006). Priming: Getting ready for battle. Molecular Plant-Microbe Interactions, 19(10), 1062–1071.

    Article  CAS  PubMed  Google Scholar 

  • Coquoz, J. L., Buchala, A. J., Meuwly, P., & Metraux, J. P. (1995). Arachidonic acid induces local but not systemic synthesis of salicylic acid and confers systemic resistance in potato plants to Phytophthora infestans and Alternaria solani. Phytopathology, 85, 1219–1224. doi:10.1094/Phyto-85-1219.

    Article  CAS  Google Scholar 

  • Daayf, F., Adam, L., & Fernando, W. G. D. (2003). Comparative screening of bacteria for biological control of potato late blight (strain US-8), using invitro, detached-leaves, and whole-plant testing systems. Canadian Journal of Plant Pathology, 25, 276–284.

    Article  Google Scholar 

  • De la Vega, L. M., Barboza-Corona, J. E., Aguilar-Uscanga, M. G., & Ramirez-lepe, M. (2006). Purification and characterization of an exochitinase from Bacillus thuringiensis subsp. Aizawai and its action against phytopathogenic fungi. Canadian Journal of Microbiology, 52, 651–657.

    Article  PubMed  Google Scholar 

  • De Souza, J. T., de Boer, M., de Waard, P., van Beek, T. A., & Raaijmakers, J. M. (2003). Biochemical, genetic and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Applied and Environmental Microbiology, 69, 7161–7172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deleu, M., et al. (2005). Fengycin interaction with lipid monolayers at the air-aqueous interface – implications for the effect of fengycin on biological membranes. Journal of Colloid and Interface Science, 283, 358–365.

    Article  CAS  PubMed  Google Scholar 

  • Diallo, S., Crepin, A., Barbey, C., Orange, Burini, J. F., & Latour, X. (2011). Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiology Ecology, 75, 351–364.

    Article  CAS  PubMed  Google Scholar 

  • Doke, N., Ramirez, A. V., & Tomiyama, K. (1987). Systemic induction of resistance in potato phytophthora infestans by local treatment with hyphal wall components of the fungus. Journal of Phytopathology, 119, 232–239.

    Article  Google Scholar 

  • Driss, F., Kallassy-Awad, M., Zouari, N., & Jaoua, S. (2005). Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. Kurstaki Journal of Applied Microbiology, 99, 945–953. doi:10.1111/j.1365-2672.2005.02639.x.

    Google Scholar 

  • El-Kot, G. A. N. (2008). Biological control of black scurf and dry rot of potato. Egyptian Journal of Phytopathology, 36, 45–56.

    Google Scholar 

  • Emmert, E. A. B., & Handelsman, J. (1999). Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiology Letters, 171, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Emmert, E. A. B., Klimowicz, A. K., Thomas, M. G., & Handelsman, J. (2004). Genetics of Zwittermicin a production by Bacillus cereus. Applied and Environmental Microbiology, 70, 104–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falardeau, J., Wise, C., Novitsky, L., & Avis, T. J. (2013). Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology, 39, 869–878. doi:10.1007/s10886-013-0319-7 PMID: 23888387.

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT. (2014). http://faostat3.fao.org/browse/Q/QC/E

  • Farag, M. A., Ryu, C.-M., Sumner, L. W., & Pare, P. W. (2006). GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry, 67, 2262–2268.

    Article  CAS  PubMed  Google Scholar 

  • Fickers, P., Guez, J. S., Damblon, C., Leclere, V., Bechet, M., et al. (2009). High-level biosynthesis of the anteiso- C17 isoform of the antibiotic mycosubtilin in Bacillus subtilis and characterization of its candidacidal activity. Applied and Environmental Microbiology, 75, 4636–4640. doi:10.1128/AEM.00548-09 PMID: 19429561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank, G. (2007). Potato Wart. Online. APSnet Features. doi:10.1094/APSnetFeature-2007-0607.

  • Gajbhiye, A., Alok, R. R., Meshram, S. U., & Dongre, A. B. (2010). Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum. World Journal of Microbiology and Biotechnology, 26(7), 1187–1194.

    Article  CAS  PubMed  Google Scholar 

  • Ge, Y. H., Pei, D. L., Zhao, Y. H., Li, W. W., Wang, S. F., & Xu, Y. Q. (2007). Correlation between antifungal agent phenazine-1- carboxylic acid and pyoluteorin biosynthesis in Pseudomonas sp. M18. Current Microbiology, 54, 277–281.

    Article  CAS  PubMed  Google Scholar 

  • Gerhardson, B. (2002). Biological substitutes for pesticides. Trends in Biotechnology, 20, 338–343.

    Article  CAS  PubMed  Google Scholar 

  • Gomaa, E. Z. (2012). Chitinase production by Bacillus thuringiensis and Bacillus licheniformis: Their potential in antifungal biocontrol. The Journal of Microbiology, 50(1), 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Gong, A. D., Li, H. P., Yuan, Q. S., Song, X. S., Yao, W., He, W. J., Zhang, J. B., & Liao, Y. C. (2015). Antagonistic mechanism of iturin a and plipastatin a from Bacillus amyloliquefaciens S76-3 from wheat spikes against Fusarium graminearum. Plos One, 10(2), 1–18. doi:10.1371/journal.pone.

    CAS  Google Scholar 

  • Gu, Y. Q., Mo, M. H., Zhou, J. P., Zou, C. S., & Zhang, K. Q. (2007). Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biology and Biochemistry, 39, 2567–2575.

    Article  CAS  Google Scholar 

  • Haas, D., & Defago, G. (2005). Biological control of soil-borne pathogens by Fluorescent Pseudomonads. Nature Reviews Microbiology, 3, 307–319.

    Article  CAS  PubMed  Google Scholar 

  • Haas, D., & Keel, C. (2003). Regulation of antibiotic production in root-colonizing pseudomonas spp. and relevance for biological control of plant disease. Annual Review of Phytopathology, 41, 117–153.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J. G. (1992). Effects of the aerial environment on late blight of potato foliage-a review. Plant Pathology, 41, 384–416.

    Article  Google Scholar 

  • Harwood, C. R., & Wipat, A. (1996). Sequencing and functional analysis of the genome of Bacillus subtilis strain 168. FEBS Letters, 389, 84–87.

    Article  CAS  PubMed  Google Scholar 

  • Heller, W. E., & Gessler, C. (1986). Induced systemic resistance in tomato plants against Phytophthora infestans. Journal of Phytopathology, 116, 323–328.

    Article  Google Scholar 

  • Hoch, J. A. (1993). The phosphorelay signal transduction pathway in the initiation of Bacillus subtilis sporulation. Journal of Cellular Biochemistry, 51, 55–61.

    Article  CAS  PubMed  Google Scholar 

  • Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: The history and evolution of current concepts. Plant Disease, 87, 4–10.

    Article  Google Scholar 

  • Ikeda, S., Shimizu, A., Shimizu, M., Takahashi, H., & Takenaka, S. (2012). Biocontrol of black scurf on potato by seed tuber treatment with Pythium oligandrum. Biological Control, 60, 297–304.

    Article  Google Scholar 

  • Jacobsen, B. J., Zidack, N. K., & Larson, B. J. (2004). The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology, 94, 1272–127.

    Article  CAS  PubMed  Google Scholar 

  • Janisiewicz, W., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual Review of Phytopathology, 40, 411–441.

    Article  CAS  PubMed  Google Scholar 

  • Kabeil, S. S., Amer, M. A., Matarand, S. M., & El-Masry, M. H. (2008). In planta biological control of potato brown rot disease in Egypt. World Journal of Agricultural Sciences, 4, 803–810.

    Google Scholar 

  • Kamensky, M., Ovadis, M., Chet, I., & Chernin, L. (2003). Soil-borne strain IC14 of Serratia plymuthica with multiple mechanisms of antifungal activity provides biocontrol of Botrytis cinerea and Sclerotinia sclerotiorum diseases. Soil Biology and Biochemistry, 35, 323–331.

    Article  CAS  Google Scholar 

  • Kemmitt, G. (2002). Early blight of potato and tomato. The Plant Health Instructor. doi:10.1094/PHI-I-2002-0809-01.

    Google Scholar 

  • Ke-qiang, C. A. O., & Forrer, H. R. (2001). Current status and prosperity on biological control of potato late blight (Phytophthora infestans). Journal of Agricultural University of Heibei.

    Google Scholar 

  • Kim, Y. S., Lim, H. S., & Kim, S. D. (1994). Bacillus subtilis YB-70 asa biocontrol agent of Fusarium solani causing plant rootrot. Journal of Microbiology and Biotechnology, 4, 68–74.

    CAS  Google Scholar 

  • Kim, P. I., Ryu, J., Kim, Y. H., & Chi, Y. T. (2010). Production of biosurfactant lipopeptides iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. Journal of Microbiology and Biotechnology, 20, 138–145.

    CAS  PubMed  Google Scholar 

  • Kloepper, J. W., Ryu, C. M., & Zhang, S. A. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Konsoula, Z., & Liakopoulou-Kyriakides, M. (2006). Thermostable a-amylase production by Bacillus subtilis entrapped in calcium alginate gel capsules. Enzyme and Microbial Technology, 39, 690–696.

    Article  CAS  Google Scholar 

  • Koumoutsi, A., et al. (2004). Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. Journal of Bacteriology, 186, 1084–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krzyzanowska, D., Obuchowski, M., Bikowski, M., Rychlowski, M., & Jafra, S. (2012). Colonization of potato rhizosphere by GFP-tagged bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors, 12, 17608–17619. doi:10.3390/s121217608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, P., Dubey, R. C., & Maheshwari, D. K. (2012). Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 167(2012), 493–499.

    Article  CAS  PubMed  Google Scholar 

  • Larkin, R. P., & Tavantzis, S. (2013). Use of biocontrol organisms and compost amendments for improved control of soilborne diseases and increased potato production. American Journal of Potato Research, 90, 261–270.

    Article  Google Scholar 

  • Manjula, K., Krishna Kishore, G., & Podile, A. R. (2004). Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Canadian Journal of Microbiology, 50, 737–744.

    Article  CAS  PubMed  Google Scholar 

  • Mehta, P., Chauhan, A., Mahajan, R., Mahajan, P. K., & Shirko, C. K. (2010). Strain of Bacillus circulans isolated from apple rhizosphere showing plant growth promoting potential. Current Science, 98(4), 538–542.

    CAS  Google Scholar 

  • Meng, Q. X., Jiang, H. H., Hanson, L. E., & Hao, J. J. (2012). Characterizing a novel strain of Bacillus amyloliquefaciens BAC03 for potential biological control application. Journal of Applied Microbiology ISSN 1364-5072.

    Google Scholar 

  • Miller, S. K., & Lyong, G. D. (1995). Assessment of the ability of elicitors to induce resistance to Phytophthora infestans. European Association for Potato Research, 370–371

    Google Scholar 

  • Mitchell, R., & Alexander, M. (1962). Microbiological processes associated with the use of chitin for biological control. Canadian Journal of Microbiology, 9, 169–177.

    Article  Google Scholar 

  • Mucharrowah, Burton, H. R., & Kuc, J. (1995). The effect of sterols on phytoalexin, steroid glycoalkaloid, and sterol accumulation in potato tuber discs inoculated with Phytophthora infestans or treated with arachidonic acid. Physiological and Molecular Plant Pathology, 47(1), 13–27.

    Article  Google Scholar 

  • Nasir, M. N., & Besson, F. (2011). Specific interactions of mycosubtilin with cholesterol-containing artificial membranes. Langmuir, 27, 10785–10792. doi:10.1021/la200767e PMID: 21766869.

    Article  CAS  PubMed  Google Scholar 

  • Nazim, S., Dawar, S. Z., Tariq, M., & Zaki, M. J. (2008). An antifungal protein from water and fruit juices of Karachi. Pakistan Journal of Botany, 40(3), 1263–1268.

    Google Scholar 

  • O’Neill. (2009). The Irish potato famine. Edina: Higgins.

    Google Scholar 

  • O’Sullivan, D. J., & O’Gara, F. (1992). Traits of fluorescent pseudomonas spp. involved in suppression of plant root pathogens. Microbiology Reviews, 56, 662–676.

    Google Scholar 

  • Obidiegwu, J. D., Flath, K., & Gebhardt, C. (2014). Managing potato wart: A review of present research status and future perspective. Theoretical and Applied Genetics, 127, 763–780. doi:10.1007/s00122-014-2268-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oerke, E. C. (2006). Crop losses to pests. Journal of Agricultural Science, 144, 31–43.

    Article  Google Scholar 

  • Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Pal, K. K., & McSpadden Gardener, B. (2006). Biological control of plant pathogens. The Plant Health Instructor. doi:10.1094/PHI-A-2006-1117-02.

    Google Scholar 

  • Park, J. K., Morita, K., Fukumoto, I., Yamasaki, Y., Nakagawa, T., Kawamukai, M., & Matsuda, H. (1997). Purification and characterization of the Chitinase (ChiA) from Enterobacter sp. G-1. Bioscience Biotechnology and Biochemistry, 61, 684–689.

    Article  CAS  Google Scholar 

  • Park, S. H., Lee, J. H., & Lee, H. K. (2000). Purification and characterization of Chitinase from a marine bacterium, Vibrio sp. 98CJll027. The Journal of Microbiology, 224–229.

    Google Scholar 

  • Peypoux, F., et al. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology, 51, 553–563.

    Article  CAS  PubMed  Google Scholar 

  • Phae, C. G., et al. (1990). Suppressive effect of Bacillus subtilis and its products on phytopathogenic microorganisms. Journal of Fermentation and Bioengineering, 69, 1–7.

    Article  CAS  Google Scholar 

  • Piggot, P. J., & Hilbert, D. W. (2004). Sporulation of Bacillus subtilis. Current Opinion in Microbiology, 7, 579–586.

    Article  CAS  PubMed  Google Scholar 

  • Pleban, S., Chernin, L., & Shet, I. (1997). Chitinolytic activity of an endophytic strain of Bacillus cereus. Letters in Applied Microbiology, 25, 284–288.

    Article  CAS  PubMed  Google Scholar 

  • Punja, Z., & Utkhede, R. (2003). Using fungi and yeasts to manage vegetable crop diseases. Trends in Biotechnology, 21, 400–407.

    Article  CAS  PubMed  Google Scholar 

  • Raaijmakers, J. M., Vlami, M., & de Souza, J. E. (2002). Antibiotic 16. production by bacterial biocontrol agents. Antonie van Leeuwenhoek, 81, 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Rahman, M. M., Ali, M. E., Khan, A. A., Akanda, A. M., Uddin, M. K., Hashim, U., & Abd Hamid, S. B. (2012). Isolation, characterization and identification of Biological control agent for potato soft rot in Bangladesh. The Scientific World Journal. doi:10.1100/2012/723293.

    Google Scholar 

  • Ramarathnam, R., Bo, S., Chen, Y., Fernando, W. G. D., et al. (2007). Molecular and biochemical detection of fengycin and bacillomycin D producing Bacillus spp. antagonistic to fungal pathogens of canola and wheat. Canadian Journal of Microbiology, 53, 901–911.

    Article  CAS  PubMed  Google Scholar 

  • Ranjbariyan, A. R., Shams-Ghahfarokhi, M., Kalantari, S., & Razzaghi-Abyaneh, M. (2011). Molecular identification of antagonistic bacteria from Tehran soils and evaluation of their inhibitory activities toward pathogenic fungi. Iranian Journal of Microbiology, 3(3), 140–146.

    PubMed  PubMed Central  Google Scholar 

  • Recep, K., Fikrettin, S., Erkol, D., & Cafer, E. (2009). Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biological Control, 50, 194–198.

    Article  Google Scholar 

  • Remadi, M. D., Ayed, F., Jaboun-Khiareddine, H., Hibar, & Mahjoub, M. E. (2006). Effects of some Bacillus sp. Isolates on Fusarium spp. in vitro and potato tuber dry rot development in vivo. Plant Pathology Journal, 5, 283–290.

    Article  Google Scholar 

  • Ristaino, J., & Johnston, S. (1999). Ecologically based approaches to management of phytophthora blight of bell pepper. Plant Disease, 83, 1080–1089.

    Article  Google Scholar 

  • Ryu, C. M., et al. (2003). Bacterial volatiles promote growth in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W., & Pare, P. W. (2004). Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiology, 134(3), 1017–1026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadfi, N., Cherif, M., Fliss, I., Boudabbous, A., & Antoun, H. (2001). Evaluation of Bacillus isolates from salty soils and Bacillus thuringiensis strains for the biocontrol of Fusarium dry rot of potato tubers. Journal of Plant Pathology, 83, 101–118.

    CAS  Google Scholar 

  • Sadfi, N., Cherif, M., Hajlaoui, M. R., Boudabbous, A., & Belanger, R. (2002). Isolation and partial purification of antifungal metabolites produced by Bacillus cereus. Annals of Microbiology, 52, 323–337.

    CAS  Google Scholar 

  • Santoyo, G., Orozco-Mosqueda Mad, C., & Govindappa, M. (2012). Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: A review. Biocontrol Science and Technology, 22(8), 855–872.

    Article  Google Scholar 

  • Senthilkumar, M., Swarnlakshmi, K., Govindasamy, V., Lee, Y. K., & Annapurna, K. (2009). Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus Rhizoctonia bataticola. Current Microbiology, 58, 288–293.

    Article  CAS  PubMed  Google Scholar 

  • Shanthiyaa, V., Saravanakumar, D., Rajendran, L., Karthikeyan, G., Prabakar, K., & Raguchander, T. (2013). Use of Chaetomium globosum for biocontrol of potato late blight disease. Crop Protection, 52, 33–38.

    Article  Google Scholar 

  • Sharga, B. M., & Lyon, G. D. (1998). Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Canadian Journal of Microbiology, 44, 77–783.

    Article  Google Scholar 

  • Sharma, P. D. (2004). Plant pathology. Plant pathology. www.rastogipublications.com

  • Sharma, N., Sharma, K. P., Gaur, R. K., & Gupta, V. K. (2011). Role of chitinase in plant defense. Asian Journal of Biochemistry, 6(1), 29–37.

    Article  CAS  Google Scholar 

  • Shekhawat, G. S., Chakrabarti, S. K., Kishore, V., Sunaina, V., & Gadewar, A. V. (1993). Possibilities of biological management of potato bacterial wilt with strains of Bacillus spp., B. subtilis, Pseudomonas fluorescens and Actinomycetes. In G. L. Hartman, & A. C. Hayward (Eds.), Bacterial wilt. Proceedings of an international conference held at Kaohsiung, 28–31 October 1992, Taiwan, Vol. 45. ACIAR Proceedings, pp. 327–328.

    Google Scholar 

  • Shoresh, M., Mastouri, F., & Harman, G. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B. P., Arora, R. K., & Khurana, S. M. P. (2002). Soil and tuber borne diseases of potato (Technical bulletin, No. 41 (Revised)). Shimla: CPRI, 74 pp.

    Google Scholar 

  • Singh, N., Pandey, P., Dubey, R. C., & Maheshwari, D. K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24, 1669–1679.

    Article  Google Scholar 

  • Somani, A. K., & Arora, R. K. (2010). Field efficacy of Trichoderma viride, Bacillus subtilis and Bacillus cereus in consortium for control of Rhizoctonia solani causing black scurf disease of potato. Indian Phytopathology, 63(1), 23–25.

    Google Scholar 

  • Stein, T. (2005). Bacillus subtilis antibiotics: Structures, syntheses and specific functions. Molecular Microbiology, 56, 845–857.

    Article  CAS  PubMed  Google Scholar 

  • Sweetingham, M. W. (1996). Integrated control of Rhizoctonia species. Taxonomy, Molecular Biology, Ecology Pathology and Disease Control, 21, 549–558.

    Google Scholar 

  • Taechowisan, T., Peberdy, J. F., & Lumyong, S. (2003). Chitinase production by endophytic Streptomyces aureofaciens CMU Ac 130 and its antagonism against phytopathogenic fungi. Annals of Microbiology, 53, 447–461.

    CAS  Google Scholar 

  • Taira, T., Ohnuma, T., Yamagami, T., ASO, Y., Ishiguro, M., & Ishihara, M. (2002). Antifungal activity of rye (Secale cereale) seed chitinases: The different binding manner of class I and class II chitinases to the fungal cell wall. Bioscience Biotechnology and Biochemistry, 66, 970–977.

    Article  CAS  Google Scholar 

  • Tan, Z., Lin, B., & Zhang, R. (2013). A novel antifungal protein of Bacillus subtilis B25. Springer Plus, 2, 543.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tariq, M., Yasmin, S., & Hafeez, F. Y. (2010). Biological control of potato black scurf by rhizosphere associated bacteria. Brazilian Journal of Microbiology, 41, 439–451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thakore, Y. (2006, Fall). The biopesticide market for global agricultural use. Industrial Biotechnology, 16, 194–208.

    Google Scholar 

  • Trivedi, P., Andey, A., & Palni, L. M. S. (2008). In vitro evaluation of antagonistic properties of Pseudomonas corrugate. Microbiological Research, 163, 329–336.

    Article  PubMed  Google Scholar 

  • Van Aalten, D. M. F., Synstad, B., Brurberg, M. B., Hough, E., & Riise, B. W. (2000). Structure of two-domain chitotriosidase from Serratia marcescens at 1.9 A0 resolution. Proceedings of the National Academy of Sciences, 97, 5842–5847.

    Article  Google Scholar 

  • Van Loon, L. C., Bakker, P. A. H. M., & Pieterse, C. M. J. (1998). Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology, 36, 453–483.

    Article  PubMed  Google Scholar 

  • Vanittanakom, N., Loeffler, W., Koch, U., & Jung, G. (1986). Fengycin-a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29–3. Journal of Antibiotics, 39, 888–901.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, C. T. (2004). Polyketide and nonribosomal peptide antibiotics: Modularity and versatility. Science, 303, 1805–1810.

    Article  CAS  PubMed  Google Scholar 

  • Wharton, P., & Wood, E. (2013). Rhizoctonia stem canker and Black scurf of potato. http://www.idahopotatodiseases.org

  • Yuan, J., Raza, W., Shen, Q., & Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 Volatile Compounds against Fusarium oxysporum f. sp. cubense. Applied and Environmental Microbiology, 78, 5942–5944.

    Google Scholar 

  • Yu, G. Y., Sinclair, G. L., Hartman, G. L., & Bertagnolli, B. L. (2002). Soil Biology and Biochemistry, 34, 955–963.

    Article  CAS  Google Scholar 

  • Yuli, P. E., Suhartono, M. T., Rukayadi, Y., Hwang, J. K., & Pyun, Y. R. (2004). Characteristics of thermostable chitinase enzymes from the Indonesian Bacillus sp. 13.26. Enzyme and Microbial Technology, 35, 147–153.

    Article  CAS  Google Scholar 

  • Zhao, P. C., Quan, C. S., Wang, Y. G., Wang, J. H., & Fan, S. D. (2013). Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. Journal of Basic Microbiology, 10, 1–9.

    CAS  Google Scholar 

  • Zhou, Y. C., Choi, Y.-L., Sun, M., & Yu, Z. (2008). Novel roles of Bacillus thuringiensis to control plant diseases. Applied Microbiology and Biotechnology, 80, 563–572.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Devi, A.R., Kotoky, R., Pandey, P., Sharma, G.D. (2016). Application of Bacillus spp. for Sustainable Cultivation of Potato (Solanum tuberosum L.) and the Benefits. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_9

Download citation

Publish with us

Policies and ethics