Skip to main content

Bacillus spp.: A Potential Plant Growth Stimulator and Biocontrol Agent Under Hostile Environmental Conditions

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology

Abstract

The genus Bacillus is one of the ecologically significant groups of bacteria found in diverse environments. The Bacillus species have been shown to improve plant growth and nutrient uptake and decrease the incidence of plant disease. They also enhance resistance of plants to adverse environmental stresses such as drought, salt, heavy metals, and nutrient deficiency. Synergistic interaction of Bacillus, with other microbes in the plant root, has been demonstrated to promote plant growth, mineral nutrition, and stress tolerance. This chapter discusses recent developments on the potential of Bacillus species as plant growth-promoting rhizobacteria (PGPR) and biocontrol agent for better plant growth, nutrient uptake, and enhanced plant tolerance to environmental stresses. Mechanisms involved in Bacillus eliciting plant growth promotion and abiotic stress tolerance have been also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelzaher, H. M. A. (2003). Biological control of using selected antagonistic rhizospheric strains of Bacillus subtilis. New Zealand Journal Crop Horticultural Science, 31(3), 209–220.

    Article  Google Scholar 

  • Adesemoye, A. O., & Egamberdieva, D. (2013). Beneficial effects of plant growth promoting rhizobacteria on improved crop production: The prospects for developing economies. In D. K. Maheshwari, M. Saraf, & A. Aeron (Eds.), Bacteria in agrobiology: Crop productivity (pp. 45–63). Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Adesemoye, A. O., & Kloepper, J. W. (2009). Plant-microbes interactions in enhanced fertilizer use efficiency. Applied Microbiology and Biotechnology, 85, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Adesemoye, A. O., Wei, H-H., & Yuen, G. (2015). Prospecting for cold-hardy autochthonous novel bacteria in crop root microbiome. Proc Amer Phytopath Society Ann Meeting, P 189.

    Google Scholar 

  • Agarwal, S., & Pandey, V. (2004). Antioxidant enzyme responses to NaCl stress in Cassia angustifolia. Biologia Plantarum, 48, 555–560.

    Article  CAS  Google Scholar 

  • Ahanger, M. A., Hashem, A., Abd Allah, E. F., & Ahmad, P. (2014). Arbuscular mycorrhiza in crop improvement under environmental stress, In: P. Ahmad, S. Rasool (Eds.), Emerging technologies and management of crop stress tolerance, Volume 2. pp 69–95.

    Google Scholar 

  • Ahmad, P., Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., John, R., Egamberdieva, D., & Gucel, S. (2015). Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Science, 6, 868. doi:10.3389/fpls.

    Google Scholar 

  • Ajilogba, C. F., Babalola, O. O., & Ahmad, F. (2013). Antagonistic effects of Bacillus species in biocontrol of tomato Fusarium wilt. Ethnology Medicine, 7(3), 205–216.

    Google Scholar 

  • Akgül, D. S., & Mirik, M. (2008). Biocontrol of Phytophthora capsici on pepper plants by Bacillus megaterium strains. Journal of Plant Pathology, 90, 29–34.

    Google Scholar 

  • Al-Ajlani, M. M., & Hasnain, S. (2010). Bacteria exhibiting antimicrobial activities; screening for antibiotics and the associated genetic studies. The Open Conference Proceedings Journal, 1, 230–238.

    Article  CAS  Google Scholar 

  • Al-Karaki, G. N., Hammad, R., & Rusan, M. (2001). Response of two cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza, 11, 43–44.

    Article  CAS  Google Scholar 

  • Almethyeb, M., Ruppel, S., Paulsen, H. M., Vassilev, N., & Eichler-Löbermann, B. (2013). Single and combined applications of arbuscular mycorrhizal fungi and Enterobacter radicincitans affect nutrient uptake of faba bean and soil biological characteristics. Applied Agricultural Forestry Research, 3(63), 229–234.

    Google Scholar 

  • Almoneafy, A. A., Xie, G. L., Tian, W. X., Xu, L. H., Zhang, G. Q., & Ibrahim, M. (2012). Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt. African Journal of Biotechnology, 11, 7193–7201.

    Google Scholar 

  • Al-Mutawa, M. M. (2003). Effect of salinity on germination and seedling growth of chick pea (Cier arietinum L.) genotypes. International Journal of Agronomy and Biology, 5, 227–229.

    Google Scholar 

  • Araujo, F. F. D., Souza, E. C., Guerreiro, R. T., Guaberto, L. M., & Araugo, A. S. F. (2012). Diversity and growth-promoting activities of Bacillus sp. in maize. Revista Caatinga Mossoró, 25(1), 1–7.

    Google Scholar 

  • Arbona, V., Marco, A. J., Ijlesias, D. J., Lopez-Climent, M. F., Talon, M., & Gómez-Coudenas, A. (2005). Carbohydrate depletion in roots and leaves of salt stressed potted Citrus clementina L. Plant Growth Regulation, 46, 153–160.

    Article  CAS  Google Scholar 

  • Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Mertynenko, E. V., & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272, 201–209.

    Article  CAS  Google Scholar 

  • Armada, E., Azcon, R., Lopez-Castillo, O. M., Calvo-Polanco, M., & Ruiz-Lozano, J. M. (2015). Autochthonous arbuscular mycorrhizal fungi and Bacillus thuringiensis from a degraded Mediterranean area can be used to improve physiological traits and performance of a plant of agronomic interest under drought conditions. Plant Physiology and Biochemistry, 90, 64–74.

    Article  CAS  PubMed  Google Scholar 

  • Arora, N. K., Khare, E., Oh, J. H., Kang, S. C., & Maheshwari, D. K. (2008). Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World Journal of Microbiology and Biotechnology, 24, 581–585.

    Article  Google Scholar 

  • Arora, N.K., Tewari, S., Singh, S., Lal, L., Maheshwari, D.K. (2012). PGPR for protection of plant health under saline conditions. In: D.K. Maheshwari (Ed.), Bacteria in Agrobiology: Stress Management, pp. 239–258.

    Google Scholar 

  • Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108, 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Ashwini, N., & Srividya, S. (2014). Potentiality of Bacillus subtilis as biocontrol agent for management of anthracnose disease of chilli caused by Colletotrichum gloeosporioides OGC1. 3 Biotech, 4, 127–136.

    Article  Google Scholar 

  • Bais, H. P., Fall, R., & Vivanco, J. M. (2004). Biocontrol of Bacillus subtilis against infection of arabidopsis roots by pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiology, 134, 307–319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baysal, O., Caliskan, M., & Yesilova, O. (2008). An inhibitory effect of a new Bacillus subtilis strain (EU07) against Fusarium oxysporum f. spradicis-lycopersici. Physiological and Molecular Plant Pathology, 73(1–3), 25–32.

    Article  Google Scholar 

  • Beneduzi, A., Peres, D., Beschoren da Costa, P., Zanettini, M. C. B., & Passaglia, L. M. P. (2008a). Genetic and phenotypic diversity of plant-growth-promoting bacilli isolated from wheat fields in southern Brazil. Research in Microbiology, 159, 244–250.

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi, A., Peres, D., Vargas, L. K., Bodanese-Zanettini, M. H., & Passaglia, L. M. P. (2008b). Evaluation of genetic diversity and plant growth promoting activities of nitrogen-fixing bacilli isolated from rice fields in South Brazil. Applied Soil Ecology, 39, 311–320.

    Article  Google Scholar 

  • Berg, G., Alavi, M., Schmidt, C.S., Zachow, C., Egamberdieva, D., Kamilova, F., Lugtenberg, B. (2013). Biocontrol and osmoprotection for plants under saline conditions. In: J. Frans de Bruijn (Ed.) Molecular microbial ecology of the rhizosphere, Vol 1, Wiley -Blackwell, USA.

    Google Scholar 

  • Bharathi, R., Vivekananthan, R., Harish, S., Ramanathan, A., & Samiyappan, R. (2004). Rhizobacteria-based bioformulations for the management of fruit rot infection in chilies. Crop Protection, 23, 835–843.

    Article  Google Scholar 

  • Bharti, N., Yadav, D., Barnawal, D., Maji, D., & Kalra, A. (2013). Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World Journal of Microbiology and Biotechnology, 29(2), 379–387.

    Article  CAS  PubMed  Google Scholar 

  • Burd, G., Dixon, D. G., & Glick, B. (2000). Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Canadian Journal of Microbiology, 46, 237–245.

    Article  CAS  PubMed  Google Scholar 

  • Calvo, P., Ormeño-Orrillo, E., Martínez-Romero, E., & ZúñigaI, D. (2010). Characterization of Bacillus isolates of potatorhizosphere from andean soils of Peru and their potential PGPR characteristics. Brazilian Journal of Microbiology, 41, 899–906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassan, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., & Luna, V. (2009). Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). European Journal of Soil Biology, 45, 28–35.

    Article  CAS  Google Scholar 

  • Cazorla, F. M., Romero, D., Perez-Garcia, A., Lugtenberg, B. J. J., de Vicente, A., & Bloemberg, G. (2007). Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. Journal in Applied Microbiology, 103(5), 1950–1959.

    Article  CAS  Google Scholar 

  • Charles, J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, G. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, K. (2010). Food security: The challenge of feeding 9 billion people. Science, 327(5967), 812–818.

    Article  CAS  Google Scholar 

  • Chen, Y. P., Rekha, P. D., Arunshen, A. B., Lai, W. A., & Young, C. C. (2006). Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34, 33–41.

    Article  Google Scholar 

  • Chen, Y. G., Zhang, Y. Q., Chen, Q. H., Klenk, H. P., He, J. W., Tang, S. K., Cui, X. L., & Li, W. J. (2011). Bacillus xiaoxiensis sp. nov., a slightly halophilic bacterium isolated from non-saline forest soil. International Journal of Systematic and Evolutionary Microbiology, 61, 2095–2100.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Liu, X., Li, C., Tian, W., Shen, Q., & Shen, B. (2014). Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt. Journal of Environmental Management, 137(1), 120–127.

    Article  PubMed  CAS  Google Scholar 

  • Cho, S., Lim, W., Hong, S., Park, S., & Yun, H. (2003). Endophytic colonization of balloon flower by antifungal strain Bacillus sp. CY22. Bioscience, Biotechnology, and Biochemistry, 67, 2132–2138.

    Article  CAS  PubMed  Google Scholar 

  • Cho, S. T., Chang, H. H., Egamberdieva, D., Kamilova, F., Lugtenberg, B., & Kuo, C. H. (2015). Genome analysis of Pseudomonas fluorescens PCL1751: A rhizobacterium that controls root diseases and alleviates salt stress for its plant host. PLoS ONE. doi:10.1371/journal.pone.0140231.

    Google Scholar 

  • Choudhary, D. K., & Johri, B. N. (2008). Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiology Research, 164, 493–513.

    Article  CAS  Google Scholar 

  • Cihan, A.C., Tekin, N., Ozcan, B., Cokmus, C. (2012). The genetic diversity of genus Bacillus and the related genera revealed by 16S rRNA gene sequences and ardra analyses isolated from geothermal regions of Turkey. Braz J Microbiol 43(1):doi.org/10.1590/S1517-83822012000100037.

    Google Scholar 

  • de-Bashan, L. E., Hernandez, J. P., Bashan, Y., & Maier, R. M. (2010). Bacillus pumilus ES4: Candidate plant growth-promoting bacterium to enhance establishment of plants in mine tailings. Environmental and Experimental Botany, 69, 343–352.

    Article  PubMed  PubMed Central  Google Scholar 

  • Delbrassinne, L., Mahillon, J. (2016). Bacillus: Occurrence. Reference Module in Food Science, from Encyclopedia of Food and Health, 307–311.

    Google Scholar 

  • Dell’Amico, E., Cavalca, L., & Andreoni, V. (2008). Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biology & Biochemistry, 40, 74–84.

    Article  CAS  Google Scholar 

  • Dodd, I. C., & Perez-Alfocea, F. (2012). Microbial alleviation of crop salinity. Journal of Experimental Botany, 63, 3415–3428.

    Article  CAS  PubMed  Google Scholar 

  • Dong, K., & Lee, S. (2011). Bacillus kyonggiensis sp. nov., isolated from soil of a lettuce field. The Journal of Microbiology, 49(5), 776–781.

    Article  PubMed  Google Scholar 

  • Dunleavy, P. J., & Ladley, P. D. (1995). Stomatal response of Vicia faba L. to indole acetic acid and abscisic acid. Journal of Experimental Botany, 46, 95–100.

    Article  CAS  Google Scholar 

  • Egamberdieva, D. (2008a). Alleviation of salinity stress in radishes with phytohormone producing rhizobacteria. Journal of Biotechnology, 136 S, 262. doi:10.1016/j.jbiotec.2008.07.560.

    Article  Google Scholar 

  • Egamberdieva, D. (2009). Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiologiae Plantarum, 31, 861–864.

    Article  CAS  Google Scholar 

  • Egamberdieva, D., & Jabborova, D. (2013). Biocontrol of cotton damping-off caused by rhizoctonia solani in salinated soil with rhizosphere bacteria. Asian and Australasian Journal of Plant Science and Biotechnology, 7(2), 31–38.

    Google Scholar 

  • Egamberdieva, D., & Kucharova, Z. (2009). Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils, 45, 561–573.

    Article  Google Scholar 

  • Egamberdieva, D., & Lugtenberg, B. (2014). PGPR to alleviate salinity stress on plant growth. In M. Miransari (Ed.), Use of microbes for the alleviation of soil stresses (Vol. 1, pp. 73–96). New York: Springer.

    Chapter  Google Scholar 

  • Egamberdieva, D., Kucharova, Z., Davranov, K., Berg, G., Makarova, N., Azarova, T., Chebotar, V., Tikhonovich, I., Kamilova, F., Validov, S., & Lugtenberg, B. (2011). Bacteria able to control foot and root rot and to promote growth of cucumber in salinated soils. Biology and Fertility of Soils, 47, 197–205.

    Article  CAS  Google Scholar 

  • Egamberdieva, D., Berg, G., Lindström, K., & Räsänen, L. A. (2013). Alleviation of salt stress of symbiotic Galega officinalis L. (goat’s rue) by co-inoculation of rhizobium with root colonising Pseudomonas. Plant and Soil, 369(1), 453–465.

    Article  CAS  Google Scholar 

  • Egamberdieva, D., Shurigin, V., Gopalakrishnan, S., & Sharma, R. (2014). Growth and symbiotic performance of chickpea (Cicer arietinum) cultivars under saline soil conditions. Journal of Biological and Chemical Research, 31(1), 333–341.

    Google Scholar 

  • Egamberdieva, D., Jabborova, D., Berg, G. (2015). Synergistic interactions between Bradyrhizobium japonicum and the endophyte Stenotrophomonas rhizophila and their effects on growth, nodulation and nutrition of soybean under salt stress. Plant Soil. 1–11.

    Google Scholar 

  • Egamberdieva, D., Abdiev, A., Khaitov, B. (2016). Synergistic interactions among root associated bacteria, rhizobia and chickpea under stress conditions. In: M.M. Azooz, P. Ahmad (Eds.)Plant-environment interaction: Responses and approaches to mitigate stress. Wiley, DOI: 10.1002/9781119081005.ch14.

    Google Scholar 

  • Egamberdiyeva, D. (2005). Plant growth promoting rhizobacteria isolated from calcisol soil in a semiarid region of Uzbekistan: Biochemical characterisation and effectiveness. Plant Nutrition and Soil Science, 168, 94–99.

    Article  CAS  Google Scholar 

  • Egamberdiyeva, D. (2007). The growth and nutrient uptake of maize inoculated with plant growth promoting bacteria affected by different soil types. Applied Soil Ecology, 36, 184–189.

    Article  Google Scholar 

  • Egamberdieva, D. (2008b). Plant growth promoting properties of bacteria isolated from wheat and pea grown in loamy sand soil. Turkish Journal of Biology, 32, 9–15.

    Google Scholar 

  • Egamberdiyeva, D., & Hoflich, G. (2003). Influence of growth promoting bacteria on the growth of wheat at different soils and temperatures. Soil Biology and Biochemistry, 35, 973–978.

    Article  CAS  Google Scholar 

  • Egamberdiyeva, D., & Höflich, G. (2004). Importance of plant growth promoting bacteria on growth and nutrient uptake of cotton and pea in semi-arid region Uzbekistan. Journal of Arid Environments, 56, 293–301.

    Article  Google Scholar 

  • Egamberdiyeva, D., & Islam, K. R. (2008). Salt tolerant rhizobacteria: Plant growth promoting traits and physiological characterization within ecologically stressed environment. In I. Ahmad, J. Pichtel, & S. Hayat (Eds.), Plant-bacteria interactions: Strategies and techniques to promote plant growth (pp. 257–281). Weinheim: Wiley-VCH Verlag GmbH.

    Chapter  Google Scholar 

  • El-Deeb, B., Khalaf, F., & Youssuf, G. (2013). Isolation and characterization of endophytic bacteria from Plectranthus tenuiflorus medicinal plant in Saudi Arabia desert and their antimicrobial activities. Journal of Plant Interactions, 8(1), 56–64.

    Article  CAS  Google Scholar 

  • Feng, Y., Chen, R., Hu, J., Zhao, F., Wang, J., Chu, H., Zhang, J., Dolfing, J., & Lin, X. (2015). Bacillus asahii comes to the fore in organic manure fertilized alkaline soils. Soil Biology & Biochemistry, 81, 186–194.

    Article  CAS  Google Scholar 

  • Figueiredo, M. V. B., Seldin, L., de Araujo, F. F., & Mariano, R. L. R. (2010). Plant growth promoting rhizobacteria: Fundamentals and applications. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria microbiology monographs. Berlin: Springer-Verlag.

    Google Scholar 

  • Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169, 30–39.

    Google Scholar 

  • Golpayegani, A., & Tilebeni, H. G. (2011). Effect of biological fertilizers on biochemical and physiological parameters of basil (Ociumum basilicum L.) medicine plant. American-Eurasian Journal of Agricultural & Environmental Sciences, 11(3), 411–416.

    CAS  Google Scholar 

  • Goudarzi, S., Banihashemi, Z., & Maftoun, M. (2011). Effect of salt and water stress on root infection by Macrophomina phaseolina and ion composition in shoot in sorghum. Iranian Journal of Plant Pathology, 47(3), 69–83.

    Google Scholar 

  • Greenway, H., & Munns, R. (1980). Mechanism of salt tolerance in non halophytes. Annual Review of Plant Physiology, 31, 149–190.

    Article  CAS  Google Scholar 

  • Gusain, Y. S., Singh, U. S., & Sharma, A. (2014). Enzymatic amelioration of drought stress in rice through the application of plant growth promoting rhizobacteria (PGPR). International Journal of Current Research, 6(1), 4487–4491.

    CAS  Google Scholar 

  • Han, H. S., & Lee, K. D. (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1(3), 210–215.

    Google Scholar 

  • Hashem, A., Abd-Allah, E. F., Alqarawi, A. A., Al-Huqail Asma, A., Alshalawi, S. R. M., Wirth, S., & Egamberdieva, D. (2015a). Salt tolerant PGPR Bacillus subtilis improved growth and physiological parameters of Indian bassia (Bassia indica) under salt stress condition. Pakistan Journal of Botany, 47(5), 1735–1741.

    Google Scholar 

  • Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Alenazi, M. M., Alwhibi Mona, S., Egamberdieva, D., & Ahmad, P. (2015b). Induction of salt stress tolerance in cowpea (Vigna unguiculata [L.] Walp.) by arbuscular mycorrhizal fungi. Legume Research, 38(5), 579–588.

    Google Scholar 

  • Heidari, M., Mosavinik, S.M., Golpayegani, A. (2011). Plant growth promoting rhizobacteria (PG effect on physiological parameters and mineral uptake in basil (Ociumum basilicum L.) under water stress. ARPN: Journal of Agricultural and Biological Science:6–11.

    Google Scholar 

  • Huang, B., Lv, C., Zhuang, P., Zhang, H., & Fan, L. (2011). Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L. Plant Biology, 13(6), 925–931.

    Article  CAS  PubMed  Google Scholar 

  • Kamil, Z., Rizk, M., Saleh, M., & Moustafa, S. (2007). Isolation and identification of rhizosphere soil chitinolytic bacteria and their potential in antifungal biocontrol. Global Journal of Molecular Sciences, 2, 57–66.

    Google Scholar 

  • Karimi, K., Amini, J., Harighi, B., & Bahramnejad, B. (2012). Evaluation of biocontrol potential of Pseudomonas and Bacillus spp. against Fusarium wilt of chickpea. Australian Journal of Crop Science, 6, 695–703.

    Google Scholar 

  • Karuppiah, P., & Rajaram, S. (2011). Exploring the potential of chromium reducing Bacillus sp. and there plant growth promoting activities. Journal of Microbiology Research, 1, 17–23.

    Article  Google Scholar 

  • Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., Zucchi, T. D., Taketani, R. G., Andreote, F. D., & de Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiological Research, 168, 183–191.

    Article  CAS  PubMed  Google Scholar 

  • Korus, K., Adesemoye, A.O., Giesler, L., Harveson, R.M., Jackson-Ziems, T.A., Wegulo, S.N. (2015). Weather variability and disease management strategies. Proc 2015 Crop Production Clinics. University of Nebraska Lincoln Extension Publication. pp 144–146.

    Google Scholar 

  • Kumar, G. P., Ahmed, S. K. M. H., Desai, S., Amalraj, E. L. D., & Rasul, A. (2014). In vitro screening for abiotic stress tolerance in potent biocontrol and plant growth promoting strains of Pseudomonas and Bacillus spp. International Journal of Bacteriology. doi:10.1155/2014/195946.

    Google Scholar 

  • Liang, X., He, C. Q., Ni, G., Tang, G. I., Chen, X. P., & Lei, Y. R. (2014). Growth and Cd accumulation of Orychophragmus violaceus as affected by inoculation of Cd-tolerant bacterial strains. Pedosphere, 24(3), 322–329.

    Article  CAS  Google Scholar 

  • Liu, Y. Y., Yao, H. Y., & Huang, C. Y. (2006). Influence of soil moisture regime on microbial community diversity and activity in a paddy soil. Acta Pedologica Sinica, 43, 828–834.

    Google Scholar 

  • López-Bucio, J., Campos-Cuevas, J. C., Hernández-Calderón, E., Velásquez-Becerra, C., Farías-Rodríguez, R., Macías-Rodríguez, L. I., & Valencia-Cantero, E. (2007). Bacillus megaterium rhizobacteria promote growth and alter root system architecture through an auxin and ethylene-independent signaling mechanism in Arabidopsis thaliana. Molecular Plant-Microbe Interactions, 20, 207–221.

    Article  PubMed  CAS  Google Scholar 

  • Madhaiyan, M., Poonguzhali, S., Kwon, S. W., & Sa, T. M. (2010). Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 60, 2490–2495.

    Article  CAS  PubMed  Google Scholar 

  • Mahalakshmi, M., & Reetha, D. (2009). Assessment of plant growth promoting activities of bacterial isolates from rhizosphere of tomato (Lycopersicon esculantum L.). Recent Research in Science and Technology, 1, 26–29.

    CAS  Google Scholar 

  • Maheswar, N. U., & Sathiyavani, G. (2012). Solubilization of phosphate by Bacillus sp. from groundnut rhizosphere (Arachis hypogaea L). Journal of Chemical and Pharmaceutical Research, 4, 4007–4011.

    Google Scholar 

  • Malfanova, N., Kamilova, F., Validov, S., Shcherbakov, A., Chebotar, V., Tikhonovich, I., & Lugtenberg, B. (2011). Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microbial Biotechnology, 4(4), 523–553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantri, N., Patade, V., Penna, S., Ford, R., & Pang, E. (2012). Abiotic stress responses in plants: Present and future. In P. Ahmad & M. N. V. Prasad (Eds.), Abiotic stress responses in plants: Metabolism, productivity and sustainability (pp. 1–19). New York: Springer.

    Chapter  Google Scholar 

  • Marulanda, A., Barea, J. M., & Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: Mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115–124.

    Article  CAS  Google Scholar 

  • Marulanda-Aguirre, A., Azcón, R., Ruiz-Lozano, J. M., & Aroca, R. (2008). Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: Physiologic and biochemical traits. Journal of Plant Growth Regulation, 27, 10–18.

    Article  CAS  Google Scholar 

  • Masood, S., Khan, A., Baig, Z. T., Zhao, X. Q., Javed, M. T., Khan, K. S., Bano, A., & Shen, R. F. (2016). Bacillus pumilus enhances the tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environmental and Experimental Botany. doi:10.1016/j.envexpbot.2015.12.011.

    Google Scholar 

  • Mishra, R. K., Prakash, O., Alam, M., & Dikshit, A. (2010). Influence of plant growth promoting rhizobacteria (PGPR) on the productivity of Pelargonium graveolens L. herit. Recent Research in Science and Technology, 2(5), 53–57.

    CAS  Google Scholar 

  • Mohamed, H. I., & Gomaa, E. Z. (2012). Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica, 50(2), 263–272.

    Article  CAS  Google Scholar 

  • Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An iturin with antifungal activity againstAspergillus flavus. Journal of Applied Microbiology, 90, 622–662.

    Article  CAS  PubMed  Google Scholar 

  • Mundree, S. G., Baker, B., Mowla, S., Peters, S., Marais, S., Willigen, C. V., Govender, K., Maredza, A., Muyanga, S., Farrant, J. M., & Thomson, J. A. (2002). Physiological andmolecular insights into drought tolerance. African Journal of Biotechnology, 1, 28–38.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Ondrasek, G., Rengel, Z., Romic, D., Poljak, M., & Romic, M. (2009). Accumulation of non/essential elements in radish plants grown in salt-affected and cadmium contaminated environment. Cereal Research Communications, 37, 9–12.

    CAS  Google Scholar 

  • Ortíz-Castro, R., Valencia-Cantero, E., & López-Bucio, J. (2008). Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signaling Behavior, 3(4), 263–265.

    Article  PubMed  PubMed Central  Google Scholar 

  • Othman, Y., Al-Karaki, G., Al-Tawaha, A. R., & Al-Horani, A. (2006). Vaviation in germination and jon uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences, 2(1), 11–15.

    Article  Google Scholar 

  • Parvaiz, A., & Satyawati, S. (2008). Salt stress and phyto biochemical responses of plants. Plant Soil Journal, 54(3), 89–99.

    CAS  Google Scholar 

  • Potts, M. (1994). Dessication tolerance of prokaryotes. Microbiological Reviews, 58, 755–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prashanth, S., & Mathivanan, N. (2010). Growth promotion of groundnut by IAA producing rhizobacteria Bacillus licheniformis MML2501. Archives of Phytopathology and Plant Protection, 43, 191–208.

    Article  CAS  Google Scholar 

  • Probanza, A., García, J. A. L., Palomino, M. R., Ramos, B., & Manero, F. J. G. (2002). Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B.licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology, 20, 75–84.

    Article  Google Scholar 

  • Qadir, M., & Oster, J. D. (2004). Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Science of the Total Environment, 323, 1–19.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, M., & Freitas, H. (2008). Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresource Technology, 99, 3491–3498.

    Article  CAS  PubMed  Google Scholar 

  • Rekha, P. D., Lai, W. A., Arun, A. B., & Young, C. C. (2007). Effect of free and encapsulated Pseudomonas putida CC-FR2-4 and Bacillus subtilis CC-pg104 on plant growth under gnotobiotic condition. BioMagnetic Research and Technology, 98, 447–451.

    CAS  Google Scholar 

  • Reva, O. N., Smirnov, V. V., Pattersson, B., & Priest, F. G. (2002). Bacillus endophyticus spp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). International Journal of Systematic and Evolutionary Microbiology, 52, 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Rhoden, S. A., Garcia, A., Santos e Silva, M. C., Azevedo, J. L., & Pamphile, J. A. (2015). Phylogenetic analysis of endophytic bacterial isolates from leaves of the medicinal plant Trichilia elegans A. Juss. (Meliaceae). Genetics Molecular Research, 14(1), 1515–1525.

    Article  CAS  PubMed  Google Scholar 

  • Romero, D., de Vicente, A., Olmos, J. L., Dávila, J. C., & Pérez-García, A. (2007). Effect of lipopeptides of antagonistic strains of Bacillus subtilis on the morphology and ultrastructure of the cucurbit fungal pathogen Podosphaera fusca. Journal of Applied Microbiology, 103, 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Sanchez, M., Armada, E., Munoz, Y., Garcia de Salamone, I. E., Aroca, R., Ruiz-Lozano, J. M., & Azcon, R. (2011). Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well watered and drought conditions. Journal of Plant Physiology, 168, 1031–1037.

    Google Scholar 

  • Safiyazov, J. S., Mannanov, R. N., & Sattarova, R. K. (1995). The use of bacterial antagonists for the control of cotton diseases. Field Crops Research, 43, 51–54.

    Article  Google Scholar 

  • Sessitsch, A., Hardoim, P., Doring, J., Weilharter, A., Krause, A., Woyke, T., et al. (2012). Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 25, 28–36.

    Google Scholar 

  • Shanker, A.K., Venkateswarlu, B. (2011). Abiotic stress in plants-mechanisms and adaptations. In Tech Publisher, Janeza Tridne Rijeka, Croatia, Pages: 428.

    Google Scholar 

  • Sharma, N., & Sharma, S. (2008). Control of foliar diseases of mustard by Bacillus from reclaimed soil. Microbiological Research, 163(4), 408–413.

    Article  PubMed  Google Scholar 

  • Sharma, P., Khanna, V., & Kumari, P. (2013). Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. African Journal of Microbiology Research, 7, 5749–5757.

    Article  CAS  Google Scholar 

  • Sheng, X. F. (2005). Growth promotion and increased potassium uptake of cotton and rape by a potassium releasing strain of Bacillus edaphicus. Soil Biology & Biochemistry, 37, 1918–1922.

    Article  CAS  Google Scholar 

  • Sheng, X. F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution, 156, 1164–1170.

    Article  CAS  PubMed  Google Scholar 

  • Shi, R., Yin, M., Tang, S. K., Lee, J. C., Park, D. J., Zhang, Y. J., Kim, C. J., & Li, W. J. (2011). Bacillus luteolus sp. nov., a halotolerant bacterium isolated from a salt field. International Journal of Systematic and Evolutionary Microbiology, 61(6), 1344–1349.

    Article  PubMed  Google Scholar 

  • Shoresh, M., Harman, G., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43.

    Article  CAS  PubMed  Google Scholar 

  • Singh, N., Pandey, P., Dubey, R. C., & Maheshwar, D. K. (2008). Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 24, 1669–1679.

    Article  Google Scholar 

  • Srividya, S., Sasirekha, B., & Ashwini, N. (2012). Multifarious antagonistic potentials of rhizosphere associated bacterial isolates against soil borne diseases of Tomato. Asian Journal of Plant Science & Research, 2, 180–186.

    Google Scholar 

  • Teixeira da Silva, J. A., & Egamberdieva, D. (2013). Plant-growth promoting rhizobacteria and medicinal plants. In Recent progress in medicinal plants (Essential Oils III and Phytopharmacology, Vol. 38, pp. 26–42). Texas: Studium Press LLC.

    Google Scholar 

  • Timmusk, S., van West, P., Gow, N. A. R., & Wagner, E. G. H. (2003). Antagonistic effects of Paenibacillus polymyxa towards the oomycete plant pathogens Phytophthora palmivora and Pythium phanidermatum. In: Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. PhD thesis. Uppsala: Uppsala University.

    Google Scholar 

  • Triky-Dotan, S., Yermiyahu, U., Katan, J., & Gamliel, A. (2005). Development of crown and root rot disease of tomato under irrigation with saline water. Phytopathology, 95, 1438–1444.

    Article  PubMed  Google Scholar 

  • Vardharajula, S., Ali, S. Z., Grover, M., Reddy, G., & Bandi, V. (2011). Drought-tolerant plant growth promoting Bacillus spp. effect on growth, osmolytes, and antioxidant status of maize under drought stress. Journal of Plant Interactions, 6(1), 1–14.

    Article  CAS  Google Scholar 

  • Viti, C., & Giovannetti, L. (2006). Bioremediation of soils polluted with hexavalent chromium using bacteria: A Challenge. In S. N. Singh & R. D. Tripathi (Eds.), Environmental bioremediation technologies (pp. 57–76). New York: Springer Publication.

    Google Scholar 

  • Vivas, A., Marulanda, A., Ruiz Lozano, J. M., Barea, J. M., & Azcon, R. (2003). Influence of Bacillus sp. on physiological activities of two arbuscular mycorrhizal fungi and on plant responses to PEG induced drought stress. Mycorrhiza, 13, 249–256.

    Article  PubMed  Google Scholar 

  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Yuan, J., Zhang, J., Shen, Z., Zhang, M., Li, M., Ruan, Y., & Shen, Q. (2013). Effects of novel bioorganic fertilizer produced by Bacillus amyloliquefaciens W19 on antagonism of Fusarium wilt of banana. Biology and Fertility of Soils, 49(4), 435–446.

    Article  Google Scholar 

  • Wani, P. A., & Khan, M. S. (2010). Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food and Chemical Toxicology, 48, 3262–3267.

    Article  CAS  PubMed  Google Scholar 

  • Welsh, D. T. (2000). Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiology Reviews, 24, 263–290.

    Article  CAS  PubMed  Google Scholar 

  • Wipat, A., & Harwood, C. R. (1999). The Bacillus subtilis genome sequence: The molecular blueprint of a soil bacterium. FEMS Microbial Ecology, 28, 1–9.

    Article  CAS  Google Scholar 

  • Wu, S. C., Caob, Z. H., Lib, Z. G., Cheunga, K. C., & Wonga, M. H. (2005). Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: A greenhouse trial. Geoderma, 125, 155–166.

    Article  Google Scholar 

  • Wu, S. C., Cheung, K. C., Luo, Y. M., & Wong, H. M. (2006). Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environmental Pollution, 140, 124–135.

    Article  CAS  PubMed  Google Scholar 

  • Xie, G. H., Cai, M. Y., Guang, C. T., & Steinberger, Y. (2003). Cultivable heterotrophic N2-fixing bacterial diversity in rice fields in the Yangtze River Plain. Biology and Fertility of Soils, 37, 29–38.

    CAS  Google Scholar 

  • Yadav, S., Kaushik, R., Saxena, A. K., & Arora, D. K. (2011). Diversity and phylogeny of plant growth promoting bacilli from moderately acidic soil. Journal of Basic Microbiology, 51(1), 98–106.

    Article  CAS  PubMed  Google Scholar 

  • Zaidi, S., Usmani, S., Singh, B. R., & Musarrat, J. (2006). Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere, 64, 991–997.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Wang, Y., Dai, J., Tang, Y., Yang, Q., Luo, X., & Fang, C. (2009). Bacillus korlensis sp. nov., a moderately halotolerant bacterium isolated from a sand soil sample in China. International Journal of Systematic and Evolutionary Microbiology, 59, 1787–1792.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Wu, J. L., Wang, Y., Dai, J., & Fang, C. X. (2011). Bacillus deserti sp. nov., a novel bacterium isolated from the desert of Xinjiang, China. Antonie van Leeuwen, 99, 221–229.

    Article  Google Scholar 

  • Zhang, G., Raza, W., Wang, X., Ran, W., & Ahen, Q. (2012). Systemic modification of cotton root exudates induced by arbuscular mycorrhizal fungi and Bacillus vallismortis HJ-5 and their effects on Verticillium wilt disease. Applied Soil Ecology, 61, 85–91.

    Article  CAS  Google Scholar 

  • Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33, 406–413.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dilfuza Egamberdieva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Egamberdieva, D. (2016). Bacillus spp.: A Potential Plant Growth Stimulator and Biocontrol Agent Under Hostile Environmental Conditions. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_5

Download citation

Publish with us

Policies and ethics