Skip to main content

Bacillus: As Bioremediator Agent of Major Environmental Pollutants

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology

Abstract

Degradation of four major environmental pollutants, pesticides, explosive waste, dyes, and polycyclic aromatic hydrocarbons (PAHs), by Bacillus spp. have been reported by several workers. The use of these pollutants has resulted in severe contamination of the environment, and strategies are now being developed to clean these substances in an economical and eco-friendly manner. Microbes are among the main vehicles for remediation of these environmental pollutants, and Bacillus spp. are also regarded as one of the potential bioremediator agent among microbes. New discoveries, such as novel biodegradation pathways, multispecies interactions, and community-level responses to pollutants, are helping us to understand, predict, and monitor the fate of pollutants. This chapter summarizes information on the biodegradation and biotransformation pathways of four major environmental pollutants by Bacillus spp. Isolation, characterization, utilization, and manipulation of the major detoxifying enzymes and the molecular basis of degradation are also discussed. An attempt has been made to highlight the factors effecting four major environmental pollutants by Bacillus spp. This may be useful in developing safer and economically feasible microbiological methods for cleanup of soil and water contaminated with such compounds. The necessity of further investigations concerning the metabolism of these substances by Bacillus spp. is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anjaneya, O., Souche, S. Y., Santoshkumar, M., & Karegoudar, T. B. (2011). Decolorization of sulfonated azo dye metanil yellow by newly isolated bacterial strains: Bacillus sp. strain AK1 and Lysinibacillus sp. strain AK2. Journal Hazard Materials, 190, 351–358.

    Article  CAS  Google Scholar 

  • Balapurea, K. H., Jainb, K., Chattarajb, S., Bhatta, N. S., & Madamwarb, D. (2014). Co-metabolic degradation of diazo dye—Reactive blue 160 by enriched mixed cultures BDN. Journal of Hazardous Materials, 279, 85–95.

    Article  Google Scholar 

  • Bhadbhade, B. J., Sarnik, S. S., & Kanekar, P. P. (2002). Biomineralization of an organophosphorus pesticide, monocrotophos, by soil bacteria. Journal of Applied Microbiology, 93, 224–234.

    Article  CAS  PubMed  Google Scholar 

  • Bisht, S., Pandey, P., Kaur, G., Aggarwal, H., Sood, A., Kumar, V., Sharma, S., & Bisht, N. S. (2014). Utilization of endophytic strain Bacillus sp. SBER3 for biodegradation of polyaromatic hydrocarbons (PAH) in soil model system. European Journal of Soil Biology, 60, 67–76.

    Article  CAS  Google Scholar 

  • Chen, S. H., Hu, W., Xiao, Y., Deng, Y. Y., Jia, J. W., & Hu, M. Y. (2012). Degradation of 3-phenoxybenzoic acid by a Bacillus sp. PLoS ONE, 7, e50456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., Chang, C., Deng, Y., An, S., & Dong, Y. H. (2014). Fenpropathrin biodegradation pathway in Bacillus sp. DG-02 and its potentials for bioremediation of pyrethroid-contaminated soils. Journal of Agricultural and Food Chemistry, 62, 2147–2157.

    Article  CAS  PubMed  Google Scholar 

  • Dawkar, V. V., Jadhav, U. U., Jadhav, S. U., & Govindwar, S. P. (2008). Biodegradation of disperse textile dye brown 3REL by newly isolated Bacillus sp. VUS. Journal of Applied Microbiology, 105, 14.

    Article  CAS  PubMed  Google Scholar 

  • Deng, D., Guo, J., Zeng, G., & Sun, G. (2008). Decolorization of anthraquinone, triphenylmethane and azo dyes by a new isolated Bacillus cereus strain DC11. International Biodeterioration and Biodegradation, 62, 263–269.

    Article  CAS  Google Scholar 

  • El-Helow, E. R., Badawy, M. E. I., Mabrouk, M. E. M., Mohamed, E. A. H., & El-Beshlawy, Y. M. (2013). Biodegradation of chlorpyrifos by a newly isolated Bacillus subtilis strain Y242. Journal of Bioremediation, 17(2), 113–123.

    Article  CAS  Google Scholar 

  • Feitkenhauer, H., Müller, R., & Märkl, H. (2003). Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60–70°C by Thermus and Bacillus spp. Biodegradation, 14, 367–372.

    Article  CAS  PubMed  Google Scholar 

  • Feng, L., Wang, W., et al. (2007). Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proceedings of the National Academy of Sciences of the United States of America, 104(13), 5602–5607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, Q., Wang, C., et al. (2015). Draft genome sequence of Brevibacillus brevis DZQ7, a plant growth-promoting rhizobacterium with broad-spectrum antimicrobial activity. Genome Announcements. doi:10.1128/genomeA.00831-15.

    Google Scholar 

  • Itoh, K., Yatome, C., & Ogawa, T. (1993). Biodegradation of anthraquinone dyes by Bacillus subtilis. Bulletin of Environment Contamination and Toxicology, 50, 522–527.

    Article  CAS  Google Scholar 

  • Jain, K., Shah, V., Chapla, D., & Madamwar, D. (2012). Decolorization and degradation of azo dye e reactive Violet 5R by an acclimatized indigenous bacterial mixed cultures-SB4 isolated from anthropogenic dye contaminated soil. Jornal of Hazardous Materials, 214, 378–386.

    Article  Google Scholar 

  • Kadam, A. A., Kulkarni, A. N., Lade, H. S., & Govindwar, S. P. (2014). Exploiting the potential of plant growth promoting bacteria in decolorization of dye Disperse Red 73 adsorbed on milled sugarcane bagasse under solid state fermentation. International Biodeterioration and Biodegradation, 86, 364–371.

    Article  CAS  Google Scholar 

  • Kolekar, Y. M., Pawar, S. P., Gawai, K. R., Lokhande, P. D., Shouche, Y. S., & Kodam, K. M. (2008). Decolorization and degradation of disperse blue 79 and acid orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresource Technology, 99, 8999.

    Article  CAS  PubMed  Google Scholar 

  • Liao, C. S., Hung, C. H., & Chao, S. L. (2013). Decolorization of azo dye Reactive Black B by Bacillus cereus strain HJ-1. Chemosphere, 90, 2109–2114.

    Article  CAS  PubMed  Google Scholar 

  • Lily, M. K., Bahuguna, A., Dangwal, K., & Garg, V. (2010). Optimization of an inducible, chromosomally encoded benzo [a] pyrene (BaP) degradation pathway in Bacillus subtilis BMT4i (MTCC 9447). Annals of Microbiology, 60, 51–58.

    Article  CAS  Google Scholar 

  • Maiti, A., Das, S., & Bhattacharyya, N. (2012). Bioremediation of high molecular weight polycyclic aromatic hydrocarbons by Bacillus thuringiensis strain NA2. Journal of Science, 1(4), 72–75.

    Google Scholar 

  • Mandal, K., Singh, B., Jariyal, M., & Gupta, V. K. (2013). Microbial degradation of fipronil by Bacillus thuringiensis. Ecotoxicology and Environmental Safety, 93, 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Mercimek, H., Dincer, S., Guzeldag, G., Ozsavli, A., & Matyar, F. (2013). Aerobic biodegradation of 2,4,6-Trinitrotoluene (TNT) by Bacillus cereus isolated from contaminated soil. Microbial Ecology, 66(3), 512.

    Article  CAS  PubMed  Google Scholar 

  • Moosvi, S., Kher, X., & Madamwar, D. (2007). Isolation characterization and decolorization of textile dyes by a mixed bacterial consortium JW-2. Dyes and Pigments, 74, 723–729.

    Article  CAS  Google Scholar 

  • Moscoso, F., Teijiz, I., Deive, F. J., & Sanromán, M. A. (2012). Efficient PAHs biodegradation by a bacterial consortium at flask and bioreactor scale. Bioresource Technology, 119, 270–276.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, L. M. (1982). Biologically induced hydrolysis of parathion in soil: Isolation of hydrolysing bacteria. Soil Biology and Biochemistry, 14, 223–229.

    Article  CAS  Google Scholar 

  • Nyanhongo, G. S., Aichernig, N., Ortner, M., Steiner, W., & Guebitz, G. M. (2008). A novel environmentally friendly 2,4,6-trinitrotoluene (TNT) based explosive. Macedonian Journal of Chemistry and Chemical Engineering, 27, 107–116.

    CAS  Google Scholar 

  • Ooi, T., Shibata, T., Sato, R., Ohno, H., Kinoshita, S., Thuoc, T. L., & Taguchi, S. (2007). An azoreductase, aerobic NADH-dependent flavoprotein discovered from Bacillus sp.: Functional expression and enzymatic characterization. Applied Microbiology and Biotechnology, 75, 377–386.

    Article  CAS  PubMed  Google Scholar 

  • Patil, P. S., Shedbalkar, U. U., Kalyani, D. C., & Jadhav, J. P. (2008). Biodegradation of reactive Blue 59 by isolated bacterial consortium PMB11. Journal of Industrial Microbiology and Biotechnology, 35, 1181–1190.

    Article  CAS  PubMed  Google Scholar 

  • Quinn, J. P., Peden, J. M. M., & Dick, R. E. (1989). Carbon-phosphorus bond cleavage by gram-positive and gram-negative soil bacteria. Applied Microbiology and Biotechnology, 31, 283–287.

    Article  CAS  Google Scholar 

  • Rangaswamy, V., & Venkateswaralu, K. (1992). Degradation of selected insecticides by bacteria isolated from soil. Bulletin of Environment Contamination and Toxicology, 49, 797–804.

    Article  CAS  Google Scholar 

  • Reddy, M. S., Naresh, B., Leela, T., Prashanthi, M., Madhusudhan, N. C., Dhanasri, G., & Devi, P. (2010). Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresource Technology, 101, 7980–7983.

    Article  CAS  PubMed  Google Scholar 

  • Salam, L. B., & Obayori, O. S. (2014). Fluorene biodegradation potentials of Bacillus strains isolated from tropical hydrocarbon-contaminated soils. African Journalof Biotechnology, 13(14), 1554–1559.

    Article  CAS  Google Scholar 

  • Salunkhe, V. P., Sawant, I. S., Banerjee, K., Wadkar, P. N., Sawant, S. D., & Hingmire, S. A. (2014). Kinetics of degradation of carbendazim by B. subtilis strains: Possibility of in situdetoxification. Environmental Monitoring and Assessment, 186(12), 8599–8610. doi:10.1007/s10661-014-4027-8.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S., Singh, B., & Gupta, V. K. (2014). Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus. Environmental Monitoring and Assessment. doi:10.1007/s10661-014-3919-y.

    Google Scholar 

  • Sharmila, M., Ramanand, K., & Sethunathan, N. (1989). Effect of yeast extract on the degradation of organophosphorus insecticides by soil enrichment and bacterial cultures. Canadian Journal of Microbiology, 35, 1105–1110.

    Article  CAS  Google Scholar 

  • Singh, B. (2014). Review on microbial carboxylesterase: General characteristic and role in organophosphate pesticides degradation. Biochemistry and Molecular Biology, 2(1), 1–6.

    Article  Google Scholar 

  • Singh, B., & Singh, K. (2014). Microbial degradation of herbicides. Critical Reviews in Microbiology. doi:10.3109/1040841X.2014.929564.

    Google Scholar 

  • Singh, B., Kaur, J., & Singh, K. (2011a). Biodegradation of malathion by Brevibacillus sp. strain KB2 and Bacillus cereus. World Journal of Microbiology and Biotechnology, 28(3), 1133–1141.

    Article  PubMed  Google Scholar 

  • Singh, B., Kaur, J., & Singh, K. (2011b). 2,4,6 trinitrophenol degradation by Bacillus species isolated from firing range. Biotechnological Letters, 33(12), 2411–2415.

    Article  CAS  Google Scholar 

  • Singh, B., Kaur, J., & Singh, K. (2012a). Transformation of malathion by Lysi1nibacillus sp. isolated from soil. Biotechnological Letters, 34(5), 863–867.

    Article  CAS  Google Scholar 

  • Singh, B., Kaur, J., & Singh, K. (2012b). Microbial remediation of explosives waste. Critical Reviews in Microbiology, 38(2), 152–167.

    Article  CAS  PubMed  Google Scholar 

  • Singh, B., Kaur, J., & Singh, K. (2014). Book chapter: Microbial degradation of explosives: TNP, RDX, and CL-20. In Biological remediation of explosive residues (pp. 87–111). Cham: Springer International Publishing.

    Chapter  Google Scholar 

  • Sun, W. Q., Meng, M., Kumar, G., Geelhaar, L. A., Payne, G. F., & Speedie, M. K. (1996). Biological denitration of propylene glycol dinitrate by Bacillus sp. ATCC 51912. Applied Microbiology and Biotechnology, 45, 525–529.

    CAS  PubMed  Google Scholar 

  • Sundaram, S., Das, M. T., & Thakur, I. S. (2013). Biodegradation of cypermethrin by Bacillus sp. in soil microcosm and in-vitro toxicity evaluation on human cell line. International Biodeterioration and Biodegradation, 77, 39–44.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Yoda, T., Ruhul, A., & Sugiura, W. (2001). Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1–2 isolated from soil. Journal of Biological Chemistry, 276, 9059–9065.

    Article  CAS  PubMed  Google Scholar 

  • Tony, B. D., Goyal, D., & Khanna, S. (2009). Decolorization of textile azo dyes by aerobic bacterial consortium. International Biodeterioration & Biodegradation, 63, 462.

    Article  CAS  Google Scholar 

  • Van der Meer, J. R., de Vos, W. M., Harayama, S., & Zehnder, A. Z. B. (1992). Molecular mechanisms of genetic adaptation to xenobiotic compounds. Microbiological Reviews, 56, 677–694.

    PubMed  PubMed Central  Google Scholar 

  • Wang, Z. W., Liang, J. S., & Liang, Y. (2013). Decolorization of reactive black 5 by a newly isolated bacterium Bacillus sp. YZU1. International Biodeterioration and Biodegradation, 76, 41–48.

    Article  CAS  Google Scholar 

  • Watson, G. K., & Cain, R. B. (1975). Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. Biochemical Journal, 146, 157–172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yatome, C., Ogawa, T., & Matsui, M. (1991). Degradation of crystal violet by Bacillus subtilis. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 26, 75–87.

    Google Scholar 

  • Yerson, D., & Christian, A. (2013). Biodegradation of the explosive pentaerythritol tetranitrate (PETN) by bacteria isolated from mining environments. Revista Peruana de Biología, 20(2), 145–150.

    Google Scholar 

  • Zhang, L. Z., Qiao, X. W., & Ma, L. P. (2009). Influence of environmental factors on degradation of carbendazim by Bacillus pumilus strain NY97–1. International Journal of Environment and Pollution, 38, 309–317.

    Article  CAS  Google Scholar 

  • Zhang, H., Zhang, Y., Hou, Z., Wu, X., Gao, H., Sun, F., & Pan, H. (2014). Biodegradation of triazine herbicide metribuzin by the strain Bacillus sp. N1. Journal of Environmental Science and Health, Part B, 49, 79–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baljinder Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Singh, B., Singh, K. (2016). Bacillus: As Bioremediator Agent of Major Environmental Pollutants. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_2

Download citation

Publish with us

Policies and ethics