Skip to main content

Bioprospecting of Multiple Hydrolytic Enzymes from Antagonistic Bacillus spp. for Biodegradation of Macromolecules

  • Chapter
  • First Online:
Book cover Bacilli and Agrobiotechnology
  • 1114 Accesses

Abstract

The author of this article and colleagues earlier reported the role played by rhizosphere bacterial antagonists, Bacillus subtilis PFMRI and Paenibacillus macerans PF9, as bioprotectant and plant growth-promoting rhizobacteria (PGPRB). Since the strains were isolated from the rhizosphere, a diverse and complex environment, it was hypothesized that the strains that are able to survive in such competitive environment could be of potential source of multiple hydrolytic enzymes with ability to biodegrade macromolecules as well. Accordingly, a number of hydrolytic enzymes of the two strains were extracted using carboxymethyl cellulose (CMC), pectin, starch and birchwood xylan as substrates and comparatively analysed for their respective catalytic activities and enzyme kinetics. Consequently, a number of hydrolytic enzymes, namely, cellulase, pectinase, xylanase and amylase, with important physiochemical properties were extracted from B. subtilis PFMRI and P. macerans PF9. Accordingly, the optimal pH and temperature of enzymes from the former strain were found to vary from 5.0 to 9.0 and 50oC to 65oC, while for the ones from the latter, strain varied from 5.5 to 9.0 and 40oC to 55oC, respectively, whereas the maximum velocity (Vmax), the amount substrate needed to reach half Vmax (Km) and the time needed to reach half Vmax under optimal condition (Km t) for enzymes from the former strain varied from 1128.64 to 13241.86 μmol.min−1.L−1, 1.81 to 205.1 mM and 0.19 to 8.04 min, while for the ones from the latter strain, values varied from 3565.10 to 15366.68 μmol.min−1.L−1, 6.1 to 114.6 mM and 1.54 to 2.86 min, respectively. The present study is the first of its kind in reporting the bioprospecting of multiple hydrolytic enzymes from bacterial antagonists for biodegradation of macromolecules. Accordingly, a number of hydrolytic enzymes stable at elevated temperatures and pH extremes as well as with higher catalytic dynamics and substrate affinity were identified. Besides, it is anticipated that the new parameter, Km t, would help us know the time limit of an enzymatic reaction and manipulate the reaction as needed. Thus, such enzymes would be of potential role in the white industry. Yet, further study should be conducted to reverse engineer and work on heterologous expression of such enzymes so as to manipulate them for improved physiochemical as well as kinetic traits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlawat, S., Dhiman, S. S., Battan, B., Mandhan, R. P., & Sharma, J. (2011). Pectinase production by Bacillus subtilis and its potential application in biopreparation of cotton and micropoly fabric. Process Biochemistry, 44(5), 521–526.

    Article  Google Scholar 

  • Aliye, N., Fininsa, C., & Hiskiyas, Y. (2008). Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biological Control, 47, 282–288.

    Article  Google Scholar 

  • Ancharida, A., Thanawan, T., Jaruwan, S., & Somboon, T. (2014). Characterization of cellulase producing Bacillus and Paenibacillus strains from Thai soils. Journal of Applied Pharmaceutical Science, 4(05), 006–011.

    Google Scholar 

  • Asha, B. M., Malini, B., Revathi, M., Yadav, A., & Sakthivel, N. (2012). Purification and characterization of a thermophilic cellulase from a novel cellulolytic strain, Paenibacillus barcinonensis. Journal of Microbiology and Biotechnology, 22, 1501–1509.

    Article  CAS  PubMed  Google Scholar 

  • Balan, V., Bals, B., Chundawat, S. P., Marshall, D., & Dale, B. E. (2009). Lignocellulosic biomass pretreatment using AFEX. Methods in Molecular Biology, 581, 61–77.

    Article  CAS  PubMed  Google Scholar 

  • Barros, F. F. C., Simiqueli, A. P. R., Andrade, C. J., & Pastore, G. M. (2013). Production of enzymes from agroindustrial wastes by biosurfactant-producing strains of Bacillus subtilis. Biotechnology Research International. Article ID 103960, 9 pp. http://dx.doi.org/10.1155/2013/103960

  • Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: A review. Applied Microbiology and Biotechnology, 56(3–4), 326–338.

    Article  CAS  PubMed  Google Scholar 

  • Bernier, R., Desrochers, M., Jurasek, L., & Paice, M. G. (1983). Isolation and characterization of a xylanase from Bacillus subtilis. Applied and Environmental Microbiology, 46(2), 511–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boland, W. E., Henriksen, E. D. C., & Doran-Peterson, J. (2010). Characterization of two Paenibacillus amylolyticus strain 27C64 pectate lyases with activity on highly methylated pectin. Applied and Environmental Microbiology, 76(17), 6006–6009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunel, B., Périssol, C., Fernandez, M., Boeufgras, J. M., & Le Petit, J. (1994). Occurrence of Bacillus species on evergreen oak leaves. FEMS Microbiology Ecology, 14, 331–342.

    Article  Google Scholar 

  • Chaudhri, A., & Suneetha, V. (2012). Microbially derived pectinases: A review. Journal of Pharmacy and Biological Science, 2(2), 01–05.

    Article  Google Scholar 

  • Dheeran, P., Nandhagopal, N., Kumar, S., Jaiswal, Y. K., & Adhikari, D. K. (2012). A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. Journal of Industrial Microbiology and Biotechnology, 39, 851–860.

    Article  CAS  PubMed  Google Scholar 

  • Emtiazi, G., Pooyan, M., & Shamalnasab, M. (2007). Cellulase activities in nitrogen fixing Paenibacillus isolated from soil in N-free media. World Journal of Agricultural Sciences, 3(5), 602–608.

    Google Scholar 

  • Eudo, K., Hakamada, Y., Takizawa, S., & Kubota, H. (2001). A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: Enzymatic properties, and nucleotide and deduced amino acid sequences. Applied Microbiology and Biotechnology, 57, 109–116.

    Article  Google Scholar 

  • Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry, 59, 257–268.

    CAS  Google Scholar 

  • Goszczynska, T., Sefontein, J. J., & Serfontein, S. (2000). Introduction to practical phytobacteriology. Pretoria: ARC-Plant Protection Research Institute.

    Google Scholar 

  • GraphPad Prism: GraphPad Prism Version 5 for Windows. ©1992–2007 GraphPad Software, San Diego. www.graphpad.com

  • Hakamada, Y., Endo, K., Takizawa, S., Kobayashi, T., Shirai, T., Yamane, T., & Ito, S. (2002). Enzymatic properties, crystallization, and deduced amino acid sequence of an alkaline endoglucanase from Bacillus circulans. Biochimica et Biophysica Acta, 1570, 174–180.

    Article  CAS  PubMed  Google Scholar 

  • Haq, I., Hameed, U., Mahmood, Z., & Javed, M. M. (2012). Solid state fermentation for the production of α-amylase by Paenibacillus amylolyticus. Pakistan Journal of Botany, 44, 341–346.

    Google Scholar 

  • Horikoshi, K., Nakano, M., Kurono, Y., & Sashihara, N. (1984). Cellulases of an alkalophilic Bacillus strain isolated from soil. Canadian Journal of Microbiology, 30, 774–779.

    Article  CAS  Google Scholar 

  • Hosoi, T., & Kiuchi, K. (2004). Production and probiotic effects of Natto Ricca. In E. Ricca, A. O. Henriques, & S. M. Cutting (Eds.), Bacterial spore formers: Probiotics and emerging applications (pp. 143–154). Wymondham: Horizon Bioscience.

    Google Scholar 

  • Janani, K. L., Kumar, G., & Rao, K. V. B. (2011). Screening of pectinase producing microorganisms from agricultural waste dump soil. Asian Journal of Biochemical and Pharmaceutical Research, 2(1), 329–337.

    Google Scholar 

  • Kamble, R. D., & Jadhav, A. R. (2012). Isolation, purification, and characterization of xylanase produced by a new species of Bacillus in solid state fermentation. International Journal of Microbiology, Article ID 683193, 8 pp. http://dx.doi.org/10.1155/2012/683193

  • Kashyap, D. R., Vohra, P. K., Chopra, S., & Tewari, R. (2001). Applications of pectinases in the commercial sector: A review. Bioresource Technology, 77, 215–227.

    Article  CAS  PubMed  Google Scholar 

  • Kaur, A., Mahajan, R., Singh, A., Garg, G., & Sharma, J. (2010). Application of cellulase-free xylano-pectinolytic enzymes from the same bacterial isolate in biobleaching of kraft pulp. Bioresource Technology, 101(3), 9150–9155.

    Article  CAS  PubMed  Google Scholar 

  • Konsoula, Z., & Liakopoulou-Kyriakides, M. (2007). Co-production of \( \alpha \)-amylase and \( \beta \)-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98(1), 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. C., Kibblewhite-Accinelli, R. E., Smith, M. R., Wagschal, K., Orts, W. J., & Wong, D. W. (2008). Cloning of Bacillus licheniformis xylanase gene and characterization of recombinant enzyme. Current Microbiology, 57(4), 301–305.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Wang, H., Zhou, C., Ma, Y., Li, J., & Song, J. (2014). Cloning, expression and characterization of a pectate lyase from Paenibacillus sp. 0602 in recombinant Escherichia coli. BMC Biotechnology, 14, 18. doi:10.1186/1472-6750-14-18.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–429.

    Article  CAS  Google Scholar 

  • Nagar, S., Mittal, A., Kumar, D., Kumar, L., Kuhad, R. C., & Gupta, V. K. (2011). Hyper production of alkali stable xylanase in lesser duration by Bacillus pumilus SV-85S using wheat bran under solid state fermentation. New Biotechnology, 28, 581–587.

    Article  CAS  PubMed  Google Scholar 

  • Naidu, G. S. N., & Panda, T. (1999). Performance of pectolytic enzymes during hydrolysis of pectic substances under assay condition: A statistical approach. Enzyme and Microbial Technology, 25, 116–124.

    Article  CAS  Google Scholar 

  • Nelson, N. (1944). A photometric adaption of the somogyi method for the determination of glucose. Biological Chemistry, 153, 375–380.

    CAS  Google Scholar 

  • Noeth, C., Britz, T. J., & Joubert, W. A. (1988). The isolation and characterization of the aerobic endospore-forming bacteria present in the liquid phase of an anaerobic fixed-bed digester, while treating a petrochemical effluent. Journal of Microbiology Ecology, 16(2), 233–240.

    Article  CAS  Google Scholar 

  • Ogawa, A., Suzumatsu, A., Takizawa, S., Kuboto, H., Sawada, K., Hakamada, Y., Kawai, S., Kobayashi, T., & Ito, S. (2007). Endoglucanases from Paenibacillus spp. from a new clan in glycoside hydrolase family 5. Journal of Biotechnology, 129(3), 406–414.

    Article  CAS  PubMed  Google Scholar 

  • Rajesh, T., Kim, Y. H., Choi, Y. K., Jeon, J. M., Kim, H. J., Park, S. H., Park, K. Y., Choi, K. Y., Kim, H., Kim, H. J., Lee, S. H., & Yang, Y. H. (2013). Identification and functional characterization of an α-amylase with broad temperature and pH stability from Paenibacillus sp. Applied Biochemistry and Biotechnology, 170(2), 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Rawat, R., & Tewari, L. (2012). Purification and characterization of an acidothermophilic cellulase enzyme produced by Bacillus subtilis strain LFS3. Extremophiles, 16, 637–644.

    Article  CAS  PubMed  Google Scholar 

  • Reva, O. N., Soroklova, I. B., & Smirnov, V. V. (2001). Simplified technique for identification of the aerobic spore-forming bacteria by phenotype. International Journal of Systematic and Evolutionary Microbiology, 51, 1361–1371.

    Article  CAS  PubMed  Google Scholar 

  • Roy, I., & Gupta, M. N. (2004). Hydrolysis of starch by a mixture of glucoamylase and pullulanase entrapped individually in calcium alginate beads. Enzyme and Microbial Technology, 34, 26–32.

    Article  CAS  Google Scholar 

  • Shaikh, N. M., Patel, A. A., Metha, S. A., & Patel, N. D. (2013). Isolation and screening of cellulolytic bacteria inhabiting different environment and optimization of cellulase production. Universal Journal of Environmental Research and Technology, 3(1), 39–49.

    CAS  Google Scholar 

  • Somogyi, M. (1952). A new reagent for the determination of sugars. Journal of Biological Chemistry, 195, 19–23.

    CAS  Google Scholar 

  • Srinivasan, M. C., & Rele, M. V. (1999). Microbial xylanases for paper industry. Current Science, 77(1), 137–142.

    CAS  Google Scholar 

  • Takami, H. (2000). Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Research, 28(21), 4317–4331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takami, H., & Horikoshi, K. (1999). Reidentification of facultatively alkaliphilic Bacillus sp. C-125 to Bacillus halodurans. Bioscience, Biotechnology, and Biochemistry, 63(5), 943–945.

    Article  CAS  PubMed  Google Scholar 

  • Teodoro, C. E. S., & Martins, M. L. L. (2000). Culture conditions for the production of thermostable amylase by Bacillus sp. Brazilian Journal of Microbiology, 31, 298–302.

    Article  CAS  Google Scholar 

  • Touzel, J. P., O’Donohue, M., Debeire, P., Samain, E., & Breton, C. (2000). Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. International Journal of Systematic and Evolutionary Microbiology, 50, 315–320.

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela, S. V., Diaz, P., & Javier Pastor, F. I. (2010). Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. Journal of Agricultural and Food Chemistry, 58(8), 4814–4818.

    Article  CAS  PubMed  Google Scholar 

  • Vasantha, R., & Hemashenpagam, N. (2012). Production and medium optimization of amylase by Bacillus using fermentation methods. Journal of Microbiology and Biotechnology Research, 2(4), 481–484.

    Google Scholar 

  • Vaseekaran, S., Balakumar, S., & Arasaratnam, V. (2010). Isolation and identification of a bacterial strain producing thermostable α- amylase. Tropical Agricultural Research, 22(1), 1–11.

    Google Scholar 

  • Viikari, L., Kantelinen, A., Poutanen, K., & Ranua, M. (1990). Characterization of pulps treated with hemicellulolytic enzymes prior to bleaching. In T. K. Kirk & H. M. Chang (Eds.), Biotechnology in pulp and paper manufacture (pp. 145–151). Stoneham: Butterworth-Heinemann.

    Chapter  Google Scholar 

  • Wang, C. Y., Chan, H., Lin, H. T., & Shyu, Y. T. (2010). Production, purification and characterisation of a novel halostable xylanase from Bacillus sp. NTU-06. The Annals of Applied Biology, 156(2), 187–197.

    Article  CAS  Google Scholar 

  • Weihong, Z., & Peilin, C. (2005). Pectinase production by Aspergillus niger P-6021 on Citrus Changshan-huyou peel in slurry-state fermentation. Chinese Journal of Chemical Engineering, 13(4), 510–515.

    Google Scholar 

  • Wilkie, K. C. B. (1979). The hemicelluloses of grasses and cereals. Advances in Carbohydrate Chemistry and Biochemistry, 36, 215–262.

    Article  CAS  Google Scholar 

  • Zou, M., Guo, F., Li, X., Zhao, J., & Qu, Y. (2014). Enhancing production of alkaline polygalacturonate lyase from Bacillus subtilis by Fed-batch fermentation. PloS One, 9(3), e90392. doi:10.1371/journal.pone.0090392.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naser Aliye Feto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Feto, N.A., Motloi, T. (2016). Bioprospecting of Multiple Hydrolytic Enzymes from Antagonistic Bacillus spp. for Biodegradation of Macromolecules. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_14

Download citation

Publish with us

Policies and ethics