Skip to main content

Potential and Prospects of Aerobic Endospore-Forming Bacteria (AEFB) in Crop Production

  • Chapter
  • First Online:
Bacilli and Agrobiotechnology

Abstract

Members of Bacillus and the genera derived from it are an ubiquitous and important component of the agroecosystem. The diverse roles essayed by these bacteria in crop production range from nutrient cycling to protection of crops from various biotic and abiotic stress factors. The versatility and ecological fitness of this bacterial group have been attributed to its ability to form hardy endospores that help them tide over stress conditions and confers a survival advantage in the rhizosphere and related environmental niches, during unfavorable times. This chapter attempts to briefly explore the historical evolution of this group of bacteria from a two-species genus to the present-day Bacillus and the whole gamut of Bacillus-derived genera, both of which constitute the broader umbrella term, viz., aerobic endospore-forming bacteria (AEFB). The various functional facets of AEFBs in crop production and the ways and means to exploit them as functional bio-inoculants for the future are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrade, L. F., de Souza, G. L. O. D., Nietsche, S., Xavier, A. A., Costa, M. R., Cardoso, A. M. S., Pereira, M. C. T., & Pereira, D. F. G. S. (2014). Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. Journal of Microbiology, 52, 27–34.

    Article  CAS  Google Scholar 

  • Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., & Fickers, P. (2009). Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories, 8, 1–12.

    Article  CAS  Google Scholar 

  • Arkhipova, T. N., Veselov, S. U., Melentiev, A. I., Martynenko, E. V., & Kudoyarova, G. R. (2005). Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil, 272, 201–209.

    Article  CAS  Google Scholar 

  • Arrebola, E., Jacobs, R., & Korsten, L. (2010). Iturin A is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. Journal of Applied Microbiology, 108, 386–395.

    Article  CAS  PubMed  Google Scholar 

  • Asaka, O., & Shoda, M. (1996). Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14. Applied and Environmental Microbiology, 62, 4081–4085.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ash, C., Priest, F. G., & Collins, M. D. (1993). Molecular identification of r-RNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test: Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek, 64, 253–260.

    Article  CAS  PubMed  Google Scholar 

  • Bai, Y., D'Aoust, F., Smith, D. L., & Driscoll, B. T. (2002). Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Canadian Journal of Microbiology, 48, 230–238.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32.

    Article  CAS  PubMed  Google Scholar 

  • Bal, H. B., Nayak, L., Das, S., & Adhya, T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil, 366, 93–105.

    Article  CAS  Google Scholar 

  • Bargabus, R. L., Zidack, N. K., Sherwood, J. W., & Jacobsen, B. J. (2004). Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biological Control, 30, 342–350.

    Article  Google Scholar 

  • Beatty, P. H., & Jensen, S. E. (2002). Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Canadian Journal of Microbiology, 48, 159–169.

    Article  CAS  PubMed  Google Scholar 

  • Bell, C. R., Dickie, G. A., Harvey, W. L. G., & Chan, J. W. Y. F. (1995). Endophytic bacteria in grapevine. Canadian Journal of Microbiology, 41, 46–53.

    Article  CAS  Google Scholar 

  • Beneduzi, A., Costa, P. B., Parma, M., Melo, I. S., Bodanese-Zanettini, M. H., & Passaglia, L. M. (2010). Paenibacillus riograndensis sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Triticum aestivum. International Journal of Systematic and Evolutionary Microbiology, 60, 128–133.

    Article  CAS  PubMed  Google Scholar 

  • Benhamou, N. (1996). Elicitor-induced plant defence pathways. Trends in Plant Science, 1, 233–240.

    Article  Google Scholar 

  • Berg, G., Zachow, C., Lottmann, J., Gotz, M., Costa, R., & Smalla, K. (2005a). Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Applied and Environmental Microbiology, 71, 4203–4213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A., & Hallmann, J. (2005b). Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbial Ecology, 51, 215–229.

    Article  CAS  Google Scholar 

  • Berge, O. M. H., Guinebretie’r, W., Achouak, P., Normand, T., & Heulin, P. (2002). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. International Journal of Systematic and Evolutionary Microbiology, 52, 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Bergey, D. H., Breed, R. S., Murray, E. G. D., & Hitchens, A. P. (1939). Bergey’s Manual of Determinative Bacteriology (5th ed.). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Bezzate, S., Aymerich, S., Chambert, R., Czarnes, S., Berge, O., & Heulin, T. (2000). Disruption of the Paenibacillus polymyxa levansucrase gene impairs its ability to aggregate soil in the wheat rhizosphere. Environmental Microbiology, 2, 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Bsat, N., Herbal, A., Casillas-Martinez, L., Setlow, P., & Helmann, J. D. (1998). Bacillus subtilis contains multiple Fur homologues: Identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Molecular Microbiology, 29, 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Buchanan, R. E., & Gibbons, N. E. (1974). Bergey’s Manual of Determinative Bacteriology (8th ed.). Baltimore: Williams and Wilkins.

    Google Scholar 

  • Burdman, S., Jurkevitch, E., Okon, Y., Subba Rao, N. S., & Dommergues, Y. R. (2000). Recent advances in the use of plant growth promoting rhizobacteria (PGPR) in agriculture. Microbial Interactions in Agriculture and Forestry, II, 229–250.

    Google Scholar 

  • Chauhan, A., Balgir, P. P., & Shirkot, C. K. (2014). Characterization of Aneurinibacillus aneurinilyticus Strain CKMV1 as a plant growth promoting rhizobacteria. International Journal of Agriculture, Environment and Biotechnology, 7(1), 37–45.

    Article  Google Scholar 

  • Chaurasia, B., Pandey, A., Palni, L. M. S., Trivedi, P., Kumar, B., & Colvin, N. (2005). Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiology Research, 160, 75–81.

    Article  CAS  Google Scholar 

  • Chen, X. H., Vater, J., Piel, J., Franke, P., Scholz, R., Schneider, K., & Borriss, R. (2006). Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. Journal of Bacteriology, 188, 4024–4036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi, S. K., Park, S. Y., Kim, R., Lee, C. H., Kim, J. F., & Park, S. H. (2008). Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochemical and Biophysical Research Communications, 365, 89–95.

    Article  CAS  PubMed  Google Scholar 

  • Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants—with special reference to induced systemic resistance (ISR). Microbiology Research, 164, 493–513.

    Article  CAS  Google Scholar 

  • Das, S., Jean, J. S., Kar, S., Chou, M. L., & Chen, C. Y. (2014). Screening of plant growth-promoting traits in arsenic-resistant bacteria isolated from agricultural soil and their potential implication for arsenic bioremediation. Journal of Hazardous Materials, 272, 112–120.

    Article  CAS  PubMed  Google Scholar 

  • Davies, P. J. (1995). The plant hormones: Their nature, occurrence, and functions. In Plant hormones (pp. 1–12). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Desale, P., Patel, B., Singh, S., Malhotra, A., & Nawani, N. (2013). Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. Journal of Basic Microbiology. doi:10.1002/jobm.201200778.

    PubMed  Google Scholar 

  • Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., & Zhang, L. H. (2001). Quenching quorum sensing dependent bacterial infection by an N-acylhomoserine lactonase. Nature, 411, 813–817.

    Article  CAS  PubMed  Google Scholar 

  • Dong, Y. H., Wang, L. Y., & Zhang, L. H. (2007). Quorum quenching microbial infections: Mechanisms and implications. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362, 1201–1211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, S. G., & Seddon, B. (2001). Mode of antagonism of Brevibacillus brevis against Botrytis cinerea in vitro. Journal of Applied Microbiology, 91, 652–659.

    Article  CAS  PubMed  Google Scholar 

  • Faure, D., Vereecke, D., & Leveau, J. H. (2009). Molecular communication in the rhizosphere. Plant and Soil, 321, 279–303.

    Article  CAS  Google Scholar 

  • Finking, R., & Marahiel, M. A. (2004). Biosynthesis of non ribosomal peptides 1. Annual Review of Microbiology, 58, 453–488.

    Article  CAS  PubMed  Google Scholar 

  • Fritze, D. (2004). Taxonomy of the genus Bacillus and related genera: The aerobic endospore-forming bacteria. Phytopathology, 94, 1245–1248.

    Article  PubMed  Google Scholar 

  • Garrity, G. M., Bell, J. A., & Lilburn, T. G. (2004). Taxonomic outline of the prokaryotes. In Bergey’s Manual® of Systematic Bacteriology. New York: Springer.

    Google Scholar 

  • Garrity, G. M., Bell, J. A., & Lilburn, T. G. (2005). The revised road map to the manual. In Bergey’s Manual® of Systematic Bacteriology (pp. 159–187). New York: Springer.

    Chapter  Google Scholar 

  • Gaur, A. C. (1990). Phosphate solubilizing microorganisms as biofertilizers (p. 176). New Delhi: Omega Scientific Publishers.

    Google Scholar 

  • Ghosh, S., Penterman, J. N., Little, R. D., Chavez, R., & Glick, B. R. (2003). Three newly isolated plant growth-promoting Bacilli facilitate the seedling growth of canola. Brassica Campestris Plant Physiol Biochem, 41, 277–281.

    Article  CAS  Google Scholar 

  • Girish, N., & Umesha, S. (2005). Effect of plant growth promoting rhizobacteria on bacterial canker of tomato. Archives of Phytopathology and Plant Protection, 38, 235–243.

    Article  CAS  Google Scholar 

  • Goldstein, A. H. (1995). Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biological Agriculture and Horticulture, 12, 185–193.

    Article  Google Scholar 

  • Grover, M., Madhubala, R., Ali, S. Z., Yadav, S. K., & Venkateswarlu, B. (2013). Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions. Journal of Basic Microbiology. doi:10.1002/jobm.201300250.

    PubMed  Google Scholar 

  • Gueldner, R. C., Reilly, C. C., Pusey, P. L., Costello, C. E., Arrendale, R. F., Cox, R. H., & Cutler, H. G. (1988). Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. Journal of Agricultural and Food Chemistry, 36, 366–370.

    Article  CAS  Google Scholar 

  • Guemouri-Athmani, S., Berge, O., Bourrain, M., Mavingui, P., Thiy, J. M., Bhatnagar, T., & Heulin, T. (2000). Diversity of Paenibacillus polymyxa in the rhizosphere of wheat (Triticum durum) in Algerian soils. European Journal of Soil Biology, 36, 149–159.

    Article  Google Scholar 

  • Gutiérrez-Luna, F. M., López-Bucio, J., Altamirano-Hernández, J., Valencia-Cantero, E., de la Cruz, H. R., & Macías-Rodríguez, L. (2010). Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis, 51, 75–83.

    Article  CAS  Google Scholar 

  • Gutierrez-Manero, F. G., Ramos-Solano, B., Probanza, A., Mehouachi, J., Tadeo, F. R., & Talon, M. (2001). The plant-growth-promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111, 206–211.

    Article  Google Scholar 

  • Haggag, W. M., & Timmusk, S. (2008). Colonization of peanut roots by biofilm-forming Paenibacillus polymyxa initiates biocontrol against crown rot disease. Journal of Applied Microbiology, 104, 961–969.

    Article  CAS  PubMed  Google Scholar 

  • Halet, D., Boon, N., & Verstraete, W. (2006). Community dynamics of methanotrophic bacteria during composting of organic matter. Journal of Bioscience and Bioengineering, 101, 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Hatayama, K., Shoun, H., Ueda, Y., & Nakamura, A. (2006). Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticu s comb. nov. International Journal of Systematic and Evolutionary Microbiology, 56, 2545–2551.

    Article  CAS  PubMed  Google Scholar 

  • Hoflich, G., Wiehe, W., & Kohn, G. (1994). Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experienca, 50, 897–905.

    Article  Google Scholar 

  • Hu, X., & Boyer, G. L. (1996). Siderophore-mediated aluminium uptake by Bacillus megaterium ATCC 19213. Applied and Environmental Microbiology, 62, 4044–4048.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, X., Tian, B., Niu, Q., Yang, J., Zhang, L., & Zhang, K. (2005). An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Research in Microbiology, 156, 719–727.

    Article  CAS  PubMed  Google Scholar 

  • Hughes, D. F., Jolley, V. D., & Brown, J. C. (1992). Role of potassium in iron-stress response mechanisms of strategy I and strategy II plants. Journal of Plant Nutrition, 15, 1821–1839.

    Article  CAS  Google Scholar 

  • Idris, E. E. S., Bochow, H., Ross, H., & Boriss, F. (2004). Use of Bacillus subtilis as biocontrol agent phytohormone action of culture filtrate prepared from plant growth promoting Bacillus amyloliquefaciens FZB24, FZB42, FZB45 and Bacillus subtilis FZB37. Journal of Plant Disease and Protection, 111, 583–597.

    CAS  Google Scholar 

  • Idris, E. E. S., Iglesias, D. J., Talon, M., & Borriss, R. (2007). Tryptophan-dependent production of Indole-3- Acetic Acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Molecular Plant-Microbe Interactions, 20, 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Idriss, E. E. S., Makarewicz, O., Farouk, A., Rosner, K., Greiner, R., Bochow, H., Richter, T., & Borriss, R. (2002). Extracellular phytase activity of Bacillus amyloliquifaciens FZB45 contributes to its plant growth- promoting effect. Microbiology, 148, 2097–2109.

    Article  CAS  PubMed  Google Scholar 

  • Janarthine, S., & Eganathan, P. (2012). Plant growth promoting of endophytic Sporosarcina aquimarina SjAM16103 isolated from the pneumatophores of Avicennia marina L. International Journal of Microbiology. doi:10.1155/2012/532060.

    PubMed  PubMed Central  Google Scholar 

  • Jetiyanon, K., & Kloepper, J. W. (2002). Mixtures of plant growth promoting rhizobacteria for induction of systemic resistance against multiple plant diseases. Biological Control, 24, 285–291.

    Article  Google Scholar 

  • Ji, S. H., Paul, N. C., Deng, J. X., Kim, Y. S., Yun, B. S., & Yu, S. H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 41, 234–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, D. L. (1998). Organic acids in the rhizosphere–a critical review. Plant and Soil, 205, 25–44.

    Article  CAS  Google Scholar 

  • Joo, G. J., Kin, Y. M., Kim, J. T., Rhee, I. K., Kim, J. H., & Lee, I. J. (2005). Gibberellins producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. Journal of Microbiology, 43, 510–515.

    CAS  Google Scholar 

  • Kadyan, S., Manju, P., Kumar, S., Singh, K., & Yadav, J. P. (2013). Assessment of functional and genetic diversity of aerobic endospore forming Bacilli from rhizospheric soil of Phyllanthus amarus L. World Journal of Microbiology and Biotechnology, 29, 1597–1610.

    Article  CAS  PubMed  Google Scholar 

  • Kajimura, Y., Sugiyama, M., & Kaneda, M. (1995). Bacillopeptins, new cyclic lipopeptide antibiotics from Bacillus subtilis FR-2. Journal of Antibiotics, 48, 1095–1103.

    Article  CAS  PubMed  Google Scholar 

  • Kannan, R., Damodaran, T., Pandey, B. K., Umamaheswari, S., Rai, R. B., Jha, S. K., Mishra, V. K., Sharma, D. K., & Sah, V. (2014). Isolation and characterization of endophytic plant growth-promoting bacteria (PGPB) associated to the sodicity tolerant polyembryonic mango (Mangifera indica L.) root stock and growth vigour in rice under saline sodic environment. African Journal of Microbiology Research, 8, 628–636.

    Article  CAS  Google Scholar 

  • Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkkinen, N., & Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning, and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology, 64, 2079–2085.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khalid, A., Arshad, M., & Zahir, Z. A. (2004). Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology, 96, 473–480.

    Article  CAS  PubMed  Google Scholar 

  • Khan, M., & Patel, C. B. (2007). Plant growth promoting effect of Bacillus firmus strain NARS1 isolated from Central Himalayan region of India on Cicer arientnum at low temperature. African Crop Science Conference Proceedings, 8, 1179–1181.

    Google Scholar 

  • Khan, M. S., Zaidi, A., & Wani, P. A. (2006). Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. In E. Lichtfouse, M. Navarrete, P. Debaeke, S. Veronique, & C. Alberola (Eds.), Sustainable agriculture (pp. 551–570). Dordrecht: Springer.

    Google Scholar 

  • Khan, Z., Kim, S. G., Jeon, Y. H., Khan, H. U., Son, S. H., & Kim, Y. H. (2008). A plant growth promoting rhizobacterium Paenibacillus polymyxa strain GBR-1, suppresses root-knot nematode. Bioresource Technology, 99, 3016–3023.

    Article  CAS  PubMed  Google Scholar 

  • Kim, K. Y., Jordan, D., & McDonald, G. A. (1998). Enterobacter agglomerans, phosphate solubilizing bacteria and microbial activity in soil: Effect of carbon sources. Soil Biology and Biochemistry, 30, 995–1003.

    Article  CAS  Google Scholar 

  • Kim, K. Y., Hwangbo, H., Kim, Y. W., Kim, H. J., Park, K. H., Kim, Y. C., & Seoung, K. Y. (2002). Organic acid production and phosphate solubilization by Enterobacter intermedium 60-2G. Korean Journal of Soil Science and Fertilizer, 35, 59–67.

    Google Scholar 

  • Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp.. Phytopathology, 94, 1259–1266.

    Article  CAS  PubMed  Google Scholar 

  • Krause, M. S., DecEuster, T. J. J., Tiquia, S. M., Michel, F. C., Jr., Madden, L. V., & Hoitink, H. A. J. (2003). Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology, 93, 1292–1300.

    Article  CAS  PubMed  Google Scholar 

  • Kucey, R. M. N., Janzen, H. H., & Leggett, M. E. (1989). Microbiologically mediated increases in plant-available-phosphorus. Advances in Agronomy, 42, 199–228.

    Article  CAS  Google Scholar 

  • Kugler, M., Loeffler, W., Rapp, C., Kern, A., & Jung, G. (1990). Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: Biological properties. Archives of Microbiology, 153, 276–281.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, A., Bisht, B. S., Joshi, V. D., & Dhewa, T. (2011). Review on bioremediation of polluted environment: A management tool. International Journal of Environmental Sciences, 1, 1079–1093.

    Google Scholar 

  • Kundu, B. S., & Gaur, A. C. (1980). Effect of nitrogen fixing and phosphate solubilizing microorganism as single and composite inoculants on cotton. Indian Journal of Microbiology, 20, 225–229.

    Google Scholar 

  • Lal, S., & Tabacchioni, S. (2009). Ecology and biotechnological potential of Paenibacillus polymyxa: A minireview. Indian Journal of Microbiology, 49, 2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leclère, V., Béchet, M., Adam, A., Guez, J. S., Wathelet, B., Ongena, M., & Jacques, P. (2005). Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Applied and Environmental Microbiology, 71, 4577–4584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, S. J., Park, S. Y., Lee, J. J., Yum, D. Y., Koo, B. T., & Lee, J. K. (2002). Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Applied and Environmental Microbiology, 68, 3919–3924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leifert, C., Li, H., Chidburee, S., Hampson, S., Workman, S., Sigee, D., & Harbour, A. (1995). Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45. Journal of Applied Bacteriology, 78, 97–108.

    Article  CAS  PubMed  Google Scholar 

  • Leong, J. (1986). Siderophores: Their biochemistry, and possible role in the biocontrol of plant pathogens. Annual Review of Phytopathology, 24, 187–209.

    Article  CAS  Google Scholar 

  • Lida, K. I., Ueda, Y., Kawamura, Y., Ezaki, T., Takade, A., Yoshida, S. I., & Amako, K. (2005). Paenibacillus motobuensis sp. nov. isolated from a composting machine utilizing soil from Motobu-town, Okinawa, Japan. International Journal of Systematic and Evolutionary Microbiology, 55(5), 1811–1816.

    Google Scholar 

  • Lim, J. H., & Kim, S. D. (2009). Synergistic plant growth promotion by the indigenous auxins-producing PGPR Bacillus subtilis AH18 and Bacillus licheniforims K11. Journal of the Korean Society for Applied Biological Chemistry, 52, 531–538.

    Article  CAS  Google Scholar 

  • Madhaiyan, M., Poonguzhali, S., Kwon, S. W., & Sa, T. M. (2010). Bacillus methylotrophicus sp. nov., a methanol-utilizing, plant-growth-promoting bacterium isolated from rice rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 60, 2490–2495.

    Article  CAS  PubMed  Google Scholar 

  • Madhaiyan, M., Poonguzhali, S., Lee, J. S., Lee, K. C., & Ari, K. (2011). Bacillus rhizosphaerae sp. nov., an novel diazotrophic bacterium isolated from sugarcane rhizosphere soil. Antonie Van Leeuwenhoek, 100, 437–444.

    Article  PubMed  Google Scholar 

  • Martin, N. L., Hu, H., Moake, M., Churey, J. J., Whittal, R., Worobo, R. W., & Vederas, J. C. (2003). Isolation, structural characterization, and properties of mattacin (Polymyxin M), a cyclic peptide antibiotic produced by Paenibacillus kobensis. Journal of Biological Chemistry, 278, 13124–13132.

    Article  CAS  PubMed  Google Scholar 

  • Masciarelli, O., Llanes, A., & Luna, V. (2014). A new PGPR co-inoculated with Bradyrhizobium japon icum enhances soybean nodulation. Microbiology Research, 169, 609–615.

    Article  CAS  Google Scholar 

  • Milner, J. L., Silo-Suh, L. A. U. R. A., Lee, J. C., He, H., Clardy, J., & Handelsman, J. (1996). Production of kanosamine by Bacillus cereus UW85. Applied and Environmental Microbiology, 62, 3061–3065.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra, P.K., Mishra, S., Selvakumar, G., Kundu, S. & Shankar Gupta, H., (2008). Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agriculturae Scandinavica Section B–Soil and Plant Science, 59(2), 189–196.

    Google Scholar 

  • Mishra, P. K., Mishra, S., Selvakumar, G., Bisht, J. K., Kundu, S., & Gupta, H. S. (2009). Co inoculation of Bacillus thuringiensis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.). World Journal of Microbiology and Biotechnology, 25, 753–761.

    Article  Google Scholar 

  • Molina, L., Constantinescu, F., Michel, L., Reimmann, C., Duffy, B., & Defago, G. (2003). Degradation of pathogen quorum-sensing molecules by soil bacteria: A preventive and curative biological control mechanism. FEMS Microbiology Ecology, 45, 71–81.

    Article  CAS  PubMed  Google Scholar 

  • Moyne, A. L., Shelby, R., Cleveland, T. E., & Tuzun, S. (2001). Bacillomycin D: An iturin with antifungal activity against Aspergillus flavus. Journal of Applied Microbiology, 90, 622–629.

    Article  CAS  PubMed  Google Scholar 

  • Murphy, J. F., Zender, G. W., Schuster, D. J., Sikora, E. J., Polston, J. E., & Kloepper, J. W. (2000). Plant growth promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Disease, 84, 779–784.

    Article  Google Scholar 

  • Murphy, J. F., Reddy, M. S., Ryu, C.-M., Kloepper, J. W., & Li, R. (2003). Rhizobacteria-mediated growth promotion of tomato leads to protection against Cucumber mosaic virus. Phytopathology, 93, 1301–1307.

    Article  PubMed  Google Scholar 

  • Neilands, J. B. (1986). A saga of siderophores. In T. R. Swinburne (Ed.), Siderophores and plant diseases (pp. 289–298). New York: Plenum.

    Chapter  Google Scholar 

  • Onega, M., & Jacques, P. (2007). Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

    Google Scholar 

  • Ongena, M., Duby, F., Jourdan, E., Beaudry, T., Jadin, V., Dommes, J., & Thonart, P. (2005). Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology, 67, 692–698.

    Article  CAS  PubMed  Google Scholar 

  • Pare, P. W., Farag, M. A., Krishnamachari, V., Zhang, H., Ryu, C. M., & Kloepper, J. W. (2005). Elicitors and priming agents initiate plant defense responses. Photosynthesis Research, 85, 149–159.

    Article  CAS  PubMed  Google Scholar 

  • Park, S. J., Park, S. Y., Ryu, C.-M., Park, S. W., & Lee, J. K. (2008). The role of AiiA, a quorum quenching enzyme from Bacillus thuringiensis on the rhizosphere competence. Journal of Microbiology and Biotechnology, 18, 1518–1521.

    CAS  PubMed  Google Scholar 

  • Pathak, K. V., & Keharia, H. (2014). Identification of surfactins and iturins produced by potent fungal antagonist, Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) tree using mass spectrometry. 3 Biotech, 4(3), 283–295.

    Article  Google Scholar 

  • Pathak, K. V., Keharia, H., Gupta, K., Thakur, S. S., & Balaram, P. (2012). Lipopeptides from the banyan endophyte, Bacillus subtilis K1: Mass spectrometric characterization of a library of fengycins. Journal of the American Society for Mass Spectrometry, 23(10), 1716–2.

    Article  CAS  PubMed  Google Scholar 

  • Pichard, B., Larue, J. P., & Thouvenot, D. (1995). Gavesrin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa. FEMS Microbiology Letters, 133, 215–218.

    Article  CAS  PubMed  Google Scholar 

  • Podile, A. R., & Dube, H. C. (1988). Plant growth-promoting activity of Bacillus subtilis strain AF1. Current Science, 57, 183–186.

    Google Scholar 

  • Poonguzhali, S., Madhaiyan, M., & Sa, T. (2006). Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris spp. pekinensis and screening of traits for potential plant growth promotion. Plant and Soil, 286, 167–180.

    Article  CAS  Google Scholar 

  • Priest, F. (1993). Systematics and ecology of Bacillus: Bacillus subtilis and other Gram-positive bacteria, biochemistry, physiology, and molecular genetics (pp. 3–16). Washington DC: American Society for Microbiology.

    Book  Google Scholar 

  • Raaijmakers, J. M., Vlami, M., & De Souza, J. T. (2002). Antibiotic production by bacterial biocontrol agents. Antonie Van Leeuwenhoek, 81, 537–547.

    Article  CAS  PubMed  Google Scholar 

  • Raffel, S. J., Stabb, E. V., Milner, J. L., & Handelsman, J. (1996). Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiology, 142, 3425–3436.

    Article  CAS  PubMed  Google Scholar 

  • Ramarathnam, R., Bo, S., Chen, Y., Fernando, W. D., Xuewen, G., & De Kievit, T. (2007). Molecular and biochemical detection of fengycin-and bacillomycin D-producing Bacillus spp. antagonistic to fungal pathogens of canola and wheat. Canadian Journal of Microbiology, 53, 901–911.

    Google Scholar 

  • Redmond, C. T., & Potter, D. A. (2010). Incidence of turf-damaging white grubs (Coleoptera: Scarabaeidae) and associated pathogens and parasitoids on Kentucky golf courses. Environmental Entomology, 39, 1838–1847.

    Article  PubMed  Google Scholar 

  • Reva, O. N., Smirnov, V. V., Pattersson, B., & Priest, F. G. (2002). Bacillus endophyticus spp. nov., isolated from the inner tissues of cotton plants (Gossypium sp.). International Journal of Systematic and Evolutionary Microbiology, 52, 101–107.

    Article  CAS  PubMed  Google Scholar 

  • Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M., & Perez-Garcia, A. (2007a). The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions Journal, 20, 430–440.

    Article  CAS  Google Scholar 

  • Romero, D., de Vicente, A., Zeriouh, H., Cazorla, F. M., Fernandez-Ortuno, D., Tores, J. A., & Perez-Garcia, A. (2007b). Evaluation of biological control agents for managing cucurbit powdery mildew on greenhouse-grown melon. Plant Pathology, 56, 976–986.

    Article  Google Scholar 

  • Rosado, A. S., De Azevedo, F. S., Da Cruz, D. W., Van Elsas, J. D., & Seldin, L. (1998). Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. Journal of Applied Microbiology, 84, 216–226.

    Article  Google Scholar 

  • Ruiu, L. (2013). Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects, 4, 476–492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryckeboer, J., Mergaert, J., Coosemans, J., Deprins, K., & Swings, J. (2003). Microbiological aspects of bio waste during composting in a monitored compost bin. Journal of Applied Microbiology, 94, 127–137.

    Article  CAS  PubMed  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., & Wie, H. X. (2003). Bacterial volatiles promote growth of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 100, 4927–4932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu, C. M., Kima, J., Choi, O., Kima, S. H., & Park, C. S. (2006). Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biological Control, 39, 282–289.

    Article  Google Scholar 

  • Schauder, S., Shokat, K., Surette, M. G., & Bassler, B. L. (2001). The Lux S family of bacterial autoinducers: Biosynthesis of a novel quorum‐sensing signal molecule. Molecular Microbiology, 41, 463–476.

    Article  CAS  PubMed  Google Scholar 

  • Seldin, L., van Elsas, J. D., & Penido, E. G. C. (1984). Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. International Journal of Systematic Bacteriology, 34, 451–456.

    Article  CAS  Google Scholar 

  • Seldin, L., Rosado, A. S., da Cruz, D. W., Nobrega, A., van Elsas, J. D., & Paiva, E. (1998). Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, rhizosphere, and non-root-associated soil from maize planted in two different Brazilian soils. Applied and Environmental Microbiology, 64, 3860–3868.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selim, S., Negrel, J., Govaerts, C., Gianinazzi, S., & Tuinen, D. V. (2005). Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. Strain B2 isolated from the sorghum mycorhizosphere. Applied and Environmental Microbiology, 71, 6501–6507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selvakumar, G., Mohan, M., Sushil, S. N., Kundu, S., Bhatt, J. C., & Gupta, H. S. (2007). Characterization and phylogenetic analysis of an entomopathogenic Bacillus cereus strain WGPSB-2 (MTCC 7182) isolated from white grub, Anomala dimidiata (Coleoptera: Scarabaeidae). Biocontrol Science and Technology, 17, 525–534.

    Article  Google Scholar 

  • Selvakumar, G., Kundu, S., Gupta, A. D., Shouche, Y. S., & Gupta, H. S. (2008). Isolation and characterization of non-rhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Current Microbiology, 56, 134–139.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, S. K., Ramesh, A., & Johri, B. N. (2013). Isolation and characterization of plant growth-promoting Bacillus amyloliquefaciens strain sks_bnj_1 and its influence on rhizosphere soil properties and nutrition of soybean (Glycine max L. Merrill). Journal of Virology and Microbiology. doi:10.5171/2013.446006.

    Google Scholar 

  • Shishido, M., Breuil, C., & Chanway, C. P. (1999). Endophytic colonization of spruce by plant growth promoting rhizobacteria. FEMS Microbiology Ecology, 29, 191–196.

    Article  CAS  Google Scholar 

  • Silo-Suh, L. A., Lethbridge, B. J., Raffel, S. J., He, H., Clardy, J., & Handelsman, J. (1994). Biological activities of two fungistatic antibiotics produced by Bacillus cereus UW85. Applied and Environmental Microbiology, 60, 2023–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skerman, V. B. D., McGowan, V., & Sneath, P. H. A. (1980). Approved lists of bacterial names. Washington, DC: American Society for Microbiology.

    Google Scholar 

  • Song, Z., Liu, K., Lu, C., Yu, J., Ju, R., & Liu, X. (2011). Isolation and characterization of a potential biocontrol Brevibacillus laterosporus. African Journal of Microbiology Research, 5, 2675–2681.

    Article  CAS  Google Scholar 

  • Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture. Wallingford: CABI.

    Book  Google Scholar 

  • Sturz, A. V., Christie, B. R., Matheson, B. G., & Nowak, J. (1997). Biodiversity of endophytic bacteria which colonized red clover nodules, roots, stems, and foliage and their influence on host growth. Biology and Fertility of Soils, 25, 13–19.

    Article  Google Scholar 

  • Subbarao, N. S. (1988). Phosphate solubilising micro-organism. In: Biofertilizer in agriculture and forestry. Regional Biofertilizer Development Centre, Hissar, India, pp 133–142.

    Google Scholar 

  • Suneeva, S. C., Prasanth, R., Rajesh, N. G., & Viswanathan, P. (2014). Transformation of Brevibacillus, a soil microbe to an uropathogen with hemagglutination trait. World Journal of Microbiology and Biotechnology, 30, 1837–1844.

    Article  CAS  PubMed  Google Scholar 

  • Sung, M. H., Kim, H., Bae, J. W., Rhee, S. K., Jeon, C. O., Kim, K., & Baek, D. H. (2002). Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. International Journal of Systematic and Evolutionary Microbiology, 52, 2251–2255.

    CAS  PubMed  Google Scholar 

  • Tanuja, Bisht, S. C., & Mishra, P. K. (2013). Ascending migration of endophytic Bacillus thuringiensis and assessment of benefits to different legumes of NW Himalayas. European Journal of Soil Biology, 56, 56–64.

    Article  Google Scholar 

  • Tendulkar, S. R., Saikumar, Y. K., Patel, V., Raghotama Munshi, T. K., Balaram, P., & Chatoo, B. B. (2007). Isolation, purification and characterization of an antifungal molecule produced by Bacillus licheniformis BC98, and its effect on phytopathogen Magnoporthe grisea. Journal of Applied Microbiology, 103, 2331–2339.

    Article  CAS  PubMed  Google Scholar 

  • Timmusk, S. (2003). Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa.

    Google Scholar 

  • Tomar, S. S., Pathan, M. A., Gupta, K. P., & Khandkar, U. R. (1993). Effect of phosphate solubilising bacteria at different levels of phosphate on black gram (Phaseolus mungo). Indian Journal of Agronomy, 38, 131–133.

    CAS  Google Scholar 

  • Tye, A., Siu, F., Leung, T., & Lim, B. (2002). Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Applied Microbiology and Biotechnol, 59, 190–197.

    Article  CAS  Google Scholar 

  • van Loon, L. C. (2000). Systemic induced resistance. In A. J. Slusarenko, R. S. S. Fraser, & L. C. van Loon (Eds.), Mechanism of resistance to plant diseases (pp. 521–574). Dordrecht: Kluwer.

    Chapter  Google Scholar 

  • Vaz-Moreira, I., Faria, C., Nobre, M. F., Schumann, P., Nunes, O. C., & Manaia, C. M. (2007). Paenibacillus humicus sp. nov., isolated from poultry litter compost. International Journal of Systematic and Evolutionary Microbiology, 57, 2267–2271.

    Article  CAS  PubMed  Google Scholar 

  • Vaz-Moreira, I., Figueira, V., Lopes, A. R., Pukall, R., Spröer, C., Schumann, P., & Manaia, C. M. (2010). Paenibacillus residui sp. nov., isolated from urban waste compost. International Journal of Systematic and Evolutionary Microbiology, 60, 2415–2419.

    Article  CAS  PubMed  Google Scholar 

  • Vazquez, P., Holguin, G., Puente, M. E., Lopez-Cortez, A., & Bashan, Y. (2000). Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid costal lagoon. Biology and Fertility of Soil, 30, 460–468.

    Article  CAS  Google Scholar 

  • Vendan, R. T., Yu, Y. J., Lee, S. H., & Rhee, Y. H. (2010). Diversity of endophytic bacteria in ginseng and their potential for plant growth promotion. The Journal of Microbiology, 48, 559–565.

    Article  CAS  PubMed  Google Scholar 

  • Vivas, A., Barea, J. M., & Azcón, R. (2005). Interactive effect of Brevibacillus brevis and Glomus mosseae, both isolated from Cd contaminated soil, on plant growth, physiological mycorrhizal fungal characteristics and soil enzymatic activities in Cd polluted soil. Environmental Pollution, 134, 257–266.

    Article  CAS  PubMed  Google Scholar 

  • Von der Weid, I., Duarte, G. F., van Elsas, J. D., & Seldin, L. (2002). Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. International Journal of Systematic and Evolutionary Microbiology, 52(6), 2147–2153.

    PubMed  Google Scholar 

  • Vos De, P., Garrity, G. M., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., Schleifer, K.-H., & Whitman, W. B. (2009). The Firmicutes (Bergey’s Manual® of Systematic Bacteriology, Vol. 3). USA: Springer.

    Google Scholar 

  • Wang, Y., Brown, H. N., Crowley, D. E., & Szaniszlo, P. J. (1993). Evidence for direct utilization of a siderophore ferrioxaminae B in axenically grown cucumber. Plant, Cell & Environment, 16, 579–585.

    Article  CAS  Google Scholar 

  • Wang, C. J., Yang, W., Wang, C., Gu, C., Niu, D. D., Liu, H. X., & Guo, J. H. (2012). Induction of drought tolerance in cucumber plants by a consortium of three plant growth-promoting rhizobacterium strains. PloS One, 7, e52565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe, K., Nagao, N., Yamamoto, S., Toda, T., & Kurosawa, N. (2007). Thermobacillus composti sp. nov., a moderately thermophilic bacterium isolated from a composting reactor. International Journal of Systematic and Evolutionary Microbiology, 57, 1473–1477.

    Article  CAS  PubMed  Google Scholar 

  • Weller, D. M. (2007). Pseudomonas biocontrol agents of soil borne pathogens: Looking back over 30 years. Phytopathology, 97, 250–256.

    Article  PubMed  Google Scholar 

  • Wen, Y., Wu, X., Teng, Y., Qian, C., Zhan, Z., Zhao, Y., & Li, O. (2011). Identification and analysis of the gene cluster involved in biosynthesis of paenibactin, a catecholate siderophore produced by Paenibacillus elgii B69. Environmental Microbiology, 13, 2726–2737.

    Article  CAS  PubMed  Google Scholar 

  • Whitehead, N. A., Barnard, A. M. L., Slater, H. L. S. N. J., & Salmond, G. P. C. (2001). Quorum sensing in Gram negative bacteria. FEMS Microbiology Reviews, 25, 365–404.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, M. K., Abergel, R. J., Raymond, K. N., Arceneaux, J. E., & Byers, B. R. (2006). Siderophores of Bacillus anthracis, Bacillus cereus, Bacillus thuringiensis. Biochemical and Biophysical Research Communications, 348, 320–325.

    Article  CAS  PubMed  Google Scholar 

  • Xie, G. H., Su, B. L., & Cui, Z. J. (1998). Isolation and identification of N2-fixing strains of Bacillus in rice rhizosphere of the Yangtze river valley. Acta Microbiologica Sinica, 38, 480–483.

    CAS  PubMed  Google Scholar 

  • Xu, Z., Shao, J., Li, B., Yan, X., Shen, Q., & Zhang, R. (2013). Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Applied and Environmental Microbiology, 79, 808–815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, Z., Reddy, M. S., & Kloepper, J. W. (2003). Survival and colonization of rhizobacteria in a tomato transplant system. Canadian Journal of Microbiology, 49, 383–389.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Hiradate, S., Tsukamot, T., Hatakeda, K., & Shirata, A. (2001). Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Biological Control, 91, 181–187.

    CAS  Google Scholar 

  • Zaidi, A., & Khan, S. (2005). Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of wheat. Journal of Plant Nutrition, 28, 2079–2092.

    Article  CAS  Google Scholar 

  • Zehnder, G., Kloepper, J., Yao, C., & Wei, G. (1997). Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth promoting rhizobacteria. Journal of Economic Entomology, 90, 391–396.

    Article  Google Scholar 

  • Zehnder, G. W., Yao, C., Murphy, J. F., Sikora, E. J., & Kloepper, J. W. (2000). Induction of resistance in tomato against cucumber mosaic cucumovirus by plant growth promoting rhizobacteria. Biological Control, 45, 127–137.

    Google Scholar 

  • Zhang, S., Reddy, M. S., & Kloepper, J. W. (2002). Development of assays for assessing induced systemic resistance by plant growth promoting rhizobacteria against blue mold of tobacco. Biological Control, 23, 79–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindan Selvakumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Selvakumar, G., Bindu, G.H., Panneerselvam, P., Ganeshamurthy, A.N. (2016). Potential and Prospects of Aerobic Endospore-Forming Bacteria (AEFB) in Crop Production. In: Islam, M., Rahman, M., Pandey, P., Jha, C., Aeron, A. (eds) Bacilli and Agrobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-44409-3_10

Download citation

Publish with us

Policies and ethics