Skip to main content

Analysis of TCP Connection Performance Using Emulation of TCP State

  • Conference paper
  • First Online:
Book cover Advances in Network Systems (iNetSApp 2015)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 461))

  • 638 Accesses

Abstract

Transmission Control Protocol (TCP) is still used by vast majority of Internet applications. However, the huge increase in bandwidth availability during the last decade has stimulated the evolution of TCP and introduction of new versions, better suited for high speed networks. Many factors can influence the performance of TCP protocol, starting from scarcity of network resources, through client or server misconfiguration, to internal limitations of applications. Proper identification of the TCP performance bottlenecks is therefore an important challenge for network operators. In the paper we proposed the methodology for finding root causes of throughput degradation in TCP connections using passive measurements. This methodology was verified by experiments conducted in a live network with 4G wireless Internet access. The paper also presents selected details of its practical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bąk, A., Gajowniczek, P., Zagożdżon, M.: Measurement methodology of TCP performance bottlenecks. In: Proceedings of the 2015 FEDCSiS, Annals of Computer Science and Information Systems, vol. 5, pp. 1149–1156 (2015). doi:10.15439/2015F284

  2. Henderson, T., Floyd, S., Gurtov, A., Nishida, Y.: RFC 6582: The NewReno modification to TCP’s fast recovery algorithm

    Google Scholar 

  3. Wei, D.X., Jin, C., Low, S.H., Hegde, S.: FAST TCP: motivation, architecture, algorithms, performance. IEEE/ACM Trans. Netw. 14(6), 1246–1259 (2006). doi:10.1109/TNET.2006.886335

  4. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control for fast, long distance networks. Proc. IEEE INFOCOM 4, 2514–2524 (2004)

    Google Scholar 

  5. Kelly, T.: Scalable TCP: improving performance in highspeed wide area networks. Comput. Commun. Rev. 32(2) (2003)

    Google Scholar 

  6. Jamal, H., Sultan, K.: Performance analysis of TCP congestion control algorithms. Int. J. Comput. Comm. 2(1) (2008)

    Google Scholar 

  7. Ha, S., Rhee, I., Xu, L.: CUBIC: a new TCP-friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008). doi:10.1145/1400097.1400105

    Article  Google Scholar 

  8. Leith, D.J., Shorten, R.N., McCullagh, G.: Experimental evaluation of Cubic-TCP. In: Proceedings of PFLDnet (2008)

    Google Scholar 

  9. Armitage, G., Stewart, L., Welzl, M., Healy, J.: An independent H-TCP implementation under FreeBSD 7.0—Description and observed behaviour. ACM SIGCOMM Comput. Commun. Rev. 38(3) (2008)

    Google Scholar 

  10. Leith, D., Shorten, R.: H-TCP: TCP for high-speed and long-distance networks. In: Proceedings of PFLDnet (2004)

    Google Scholar 

  11. Leith, D.J., Shorten, R.N., Lee, Y.: H-TCP: A framework for congestion control in high-speed and long-distance networks. In: Proceedings of PFLDnet (2005)

    Google Scholar 

  12. Floyd, S.: RFC 3649: Highspeed TCP for large congestion windows

    Google Scholar 

  13. Floyd, S.: RFC 3742: Limited slow-start for TCP with large congestion windows

    Google Scholar 

  14. Tan, K., Song, J., Zhang, Q., Sridharan, M.: A compound TCP approach for high-speed and long distance networks. Proc. INFOCOM 2006, 1–12 (2006). doi:10.1109/INFOCOM.2006.188

    Google Scholar 

  15. Mascolo, S., Casetti, C., Gerla, M., Sanadidi, M.Y., Wang, R.: TCP Westwood: bandwidth estimation for enhanced transport over wireless links. Proc. ACM MOBICOM 2001, 287–297 (2001)

    Google Scholar 

  16. Schiavone, M., Romirer-Maierhofer, P., Ricciato, F., Baiocchi, A.: Towards bottleneck identification in cellular networks via passive TCP monitoring. Lect. Notes Comput. Sci. 8487, 72–85 (2014)

    Article  Google Scholar 

  17. Constantine, B., Forget, G., Geib, R., Schrage, R.: RFC 6349: Framework for TCP throughput testing

    Google Scholar 

  18. Afanasyev, A., Tilley, N., Reiher, P., Kleinrock, L.: Host-to-Host congestion control for TCP. IEEE Commun. Surv. Tut. 12(3), 304–342 (2010)

    Article  Google Scholar 

  19. Prasad, R.S., Jain, M., Dovrolis, C.: Socket buffer auto-sizing for high-performance data transfers. J. Grid Comput. 1(4), 361–376 (2003)

    Google Scholar 

  20. Semke, J., Mathis Mahdavi, M.: Automatic TCP buffer tuning computer communication review. ACM SIGCOMM 28(4) (1998)

    Google Scholar 

  21. Gardner, M.K., Feng, W.-C., Fisk, M.: Dynamic right-sizing in FTP (drsFTP): enhancing grid performance in user-space. In: Proceedings of IEEE symposium on high-performance distributed computing (2002)

    Google Scholar 

  22. Mathis, M., Reddy, R.: Enabling high performance data transfers. http://www.psc.edu/networking/perf tune.html (2003)

  23. Fisk, M., Feng, W.: Dynamic right-sizing: TCP flow-control adaptation. In: Proceedings of the 14th Annual ACM/IEEE SC2001 Conference (2001)

    Google Scholar 

  24. Weigle, E., Feng, W.: A comparison of TCP automatic tuning techniques for distributed computing. In: Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing (2002)

    Google Scholar 

  25. Hirabaru, M.: Impact of bottleneck queue size on TCP protocols and its measurement. IEICE Trans. Commun. E89-B(1) (2006)

    Google Scholar 

  26. Wang, Yi, Guohan, Lu, Li, Xing: A study of internet packet reordering. Lect. Notes Comput. Sci. 3090, 350–359 (2004)

    Article  Google Scholar 

  27. Jaiswal, S., Iannaccone, G., Diot, C., Kurose, J., Towsley, D.: Measurement and classification of out-of-sequence packets in a tier-1 IP backbone. IEEE/ACM Trans. Netw. 15(1), 54–66 (2007). doi:10.1109/TNET.2006.890117

  28. Mathis, M., Heffner, J.: RFC 4821: packetization layer path MTU discovery

    Google Scholar 

  29. Hu, N., LI, L.M., Mao, Z., Steenkiste, P., Wang, J.: Locating internet bottlenecks: algorithms, measurements, and implications. SIGCOMM Comput. Commun. Rev. 34(4), 41–54 (2004). doi:10.1145/1030194.1015474

  30. Hu, N., Steenkiste, P.: Evaluation and characterization of available bandwidth probing techniques. IEEE J. Sel. Areas Commun. 21(6) (2003)

    Google Scholar 

  31. Linux kernel 3.18. https://www.kernel.org/

  32. wpdpack library. https://github.com/engina/uip-1.0-win/tree/master/wpdpack

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Bąk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Bąk, A., Gajowniczek, P., Zagożdżon, M. (2017). Analysis of TCP Connection Performance Using Emulation of TCP State. In: Grzenda, M., Awad, A., Furtak, J., Legierski , J. (eds) Advances in Network Systems . iNetSApp 2015. Advances in Intelligent Systems and Computing, vol 461. Springer, Cham. https://doi.org/10.1007/978-3-319-44354-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44354-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44352-2

  • Online ISBN: 978-3-319-44354-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics