Skip to main content

Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs

  • Chapter
  • First Online:
Hardware Security and Trust

Abstract

This chapter gives an extensive description of ring oscillators (ROs) implemented on Xilinx FPGA technology, aiming at providing a basic primitive to define physically unclonable functions based on ROs and illustrating, through detailed analyses, frequency distributions. As for the implementation, we detail in the chapter any step required to implement a RO and measure its frequency. In particular, we illustrate how to accomplish such operation by means of Xilinx ChipScope. Furthermore, we show main design parameters, such as the number of stages, of the RO and how they impact on the frequency characterization. At the end, we provide other characterization by means of dynamic parameters variations, such as temperature and aging effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amouri A, Bruguier F, Kiamehr S, Benoit P, Torres L, Tahoori M. Aging effects in fpgas: an experimental analysis. In: 2014 24th international conference on Field Programmable Logic and Applications (FPL); 2014. p. 1–4.

    Google Scholar 

  2. Anderson JH. A puf design for secure FPGA-based embedded systems. In: Proceedings of the 2010 Asia and South Pacific design automation conference. IEEE Press; 2010. p. 1–6.

    Google Scholar 

  3. Barbareschi M, Bagnasco P, Mazzeo A. Supply voltage variation impact on Anderson PUF quality. In: 2015 10th international conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE; 2015. p. 1–6.

    Google Scholar 

  4. Barbareschi M, Battista E, Mazzeo A, Mazzocca N. Testing 90 nm microcontroller SRAM PUF quality. In: 2015 10th international conference on Design and Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE; 2015. p. 1–6.

    Google Scholar 

  5. Gassend B, Clarke D, Van Dijk M, Devadas S. Silicon physical random functions. In: Proceedings of the 9th ACM conference on computer and communications security. ACM; 2002. p. 148–60.

    Google Scholar 

  6. Holcomb DE, Burleson WP, Fu K. Power-up SRAM state as an identifying fingerprint and source of true random numbers. IEEE Trans Comput. 2009;58(9):1198–210.

    Google Scholar 

  7. Kumar SS, Guajardo J, Maes R, Schrijen G-J, Tuyls P. The butterfly PUF protecting IP on every FPGA. In: IEEE international workshop on hardware-oriented security and trust, 2008. HOST 2008. IEEE; 2008. p. 67–70.

    Google Scholar 

  8. Lim D, Lee JW, Gassend B, Suh GE, Van Dijk M, Devadas S. Extracting secret keys from integrated circuits. IEEE Trans Very Large Scale Integr VLSI Syst. 2005;13(10):1200–5.

    Google Scholar 

  9. Lorenz D, Georgakos G, Schlichtmann U. Aging analysis of circuit timing considering NBTI and HCI. In: 15th IEEE international on-line testing symposium, 2009. IOLTS 2009. IEEE; 2009. p. 3–8.

    Google Scholar 

  10. Maes R, Verbauwhede I. Physically unclonable functions: a study on the state of the art and future research directions. In: Towards hardware-intrinsic security. Springer; 2010. p. 3–37.

    Google Scholar 

  11. Maiti A, Casarona J, McHale L, Schaumont P. A large scale characterization of RO-PUF. In: 2010 IEEE international symposium on Hardware-Oriented Security and Trust (HOST). IEEE; 2010. p. 94–9.

    Google Scholar 

  12. Maiti A, Schaumont P. Improving the quality of a physical unclonable function using configurable ring oscillators. In: International conference on field programmable logic and applications, 2009. FPL 2009. IEEE; 2009. p. 703–7.

    Google Scholar 

  13. Maiti A, Schaumont P. Improved ring oscillator PUF: an FPGA-friendly secure primitive. J Cryptol. 2011;24(2):375–97.

    Article  MathSciNet  MATH  Google Scholar 

  14. Merli D, Stumpf F, Eckert C. Improving the quality of ring oscillator PUFs on FPGAs. In: Proceedings of the 5th workshop on embedded systems security. ACM; 2010. p. 9.

    Google Scholar 

  15. Qu G, Yin C-E. Temperature-aware cooperative ring oscillator PUF. In: IEEE international workshop on hardware-oriented security and trust, 2009. HOST’09. IEEE; 2009. p. 36–42.

    Google Scholar 

  16. Skorobogatov S, Woods C. Breakthrough silicon scanning discovers backdoor in military chip. Springer; 2012.

    Google Scholar 

  17. Suh GE, Devadas S. Physical unclonable functions for device authentication and secret key generation. In: Proceedings of the 44th annual design automation conference. ACM; 2007. p. 9–14.

    Google Scholar 

  18. van der Leest V, Schrijen G-J, Handschuh H, Tuyls P. Hardware intrinsic security from D flip-flops. In: Proceedings of the fifth ACM workshop on scalable trusted computing. ACM; 2010. p. 53–62.

    Google Scholar 

  19. Vatajelu EI, Di Natale G, Barbareschi M, Torres L, Indaco M, Prinetto P. Spin-transfer torque magnetic random access memory (STT-MRAM). ACM J Emer Technol Comput Syst JETC. 2015.

    Google Scholar 

  20. Xilinx. Spartan-6 family overview. Available at http://www.xilinx.com/support/documentation/data_sheets/ds160.pdf.

  21. Xilinx. Spartan-6 FPGA configurable logic block. Available at http://www.xilinx.com/support/documentation/user_guides/ug384.pdf.

  22. Xilinx. Spartan-6 FPGA data sheet: DC and switching characteristics. Available at http://www.xilinx.com/support/documentation/data_sheets/ds162.pdf.

  23. Xin X, Kaps J-P, Gaj K. A configurable ring-oscillator-based PUF for xilinx FPGAs. In: 2011 14th euromicro conference on Digital System Design (DSD). IEEE; 2011. p. 651–7.

    Google Scholar 

  24. Yin C-ED, Qu G. LISA: maximizing RO PUF’s secret extraction. In: 2010 IEEE international symposium on Hardware-Oriented Security and Trust (HOST). IEEE; 2010. p. 100–5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Barbareschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbareschi, M., Di Natale, G., Torres, L. (2017). Implementation and Analysis of Ring Oscillator Circuits on Xilinx FPGAs. In: Sklavos, N., Chaves, R., Di Natale, G., Regazzoni, F. (eds) Hardware Security and Trust. Springer, Cham. https://doi.org/10.1007/978-3-319-44318-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44318-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44316-4

  • Online ISBN: 978-3-319-44318-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics