The Epistemology of Modality and the Epistemology of Mathematics

  • Otávio BuenoEmail author
Part of the Synthese Library book series (SYLI, volume 378)


In this paper I explore some connections between the epistemology of modality and the epistemology of mathematics, and argue that they have far more in common than it may initially seem to be the case—even though modality need not (in fact, should not) be characterized in terms of possible worlds (as the modal realist insists) and mathematics need not (in fact, should not) be understood in terms of abstract entities (as the platonist recommends). Let’s see why.


Actual World Mathematical Object Mathematical Practice Modal Realist Peano Arithmetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many thanks to Jacob Busch, Albert Casullo, Bob Fischer, Hannes Leitgeb, Daniel Nolan, Sonia Roca Royes, Scott Shalkowski, Asbjørn Steglich-Petersen, Anand Vaidya, and Tim Williamson for helpful discussions of the issues examined in this paper. Thanks, in particular, to Bob Fischer, Melisa Vivanco, and an anonymous referee for insightful comments on earlier versions of the work. Their comments led to substantial improvements.


  1. Benacerraf, P., & Putnam, H. (Eds.). (1983). Philosophy of mathematics: Selected readings (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  2. Bernecker, S., & Pritchard, D. (Eds.). (2011). Routledge companion to epistemology. London: Routledge.Google Scholar
  3. Bishop, E. (1967). Foundations of constructive analysis. New York: McGraw-Hill.Google Scholar
  4. Boolos, G. (1998). Logic, logic, and logic. Cambridge, MA: Harvard University Press.Google Scholar
  5. Bueno, O. (2008). Nominalism and mathematical intuition. Protosociology, 25, 89–107.Google Scholar
  6. Bueno, O. (2011a). When physics and biology meet: The nanoscale case. Studies in History and Philosophy of Biological and Biomedical Sciences, 42, 180–189.CrossRefGoogle Scholar
  7. Bueno, O. (2011b). Logical and mathematical knowledge. In Bernecker & Pritchard (Eds.), (pp. 358–368).Google Scholar
  8. Bueno, O. (2013). Nominalism in the philosophy of mathematics. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy (Fall 2013 edition). URL =
  9. Bueno, O., & Shalkowski, S. (2009). Modalism and logical pluralism. Mind, 118, 295–321.CrossRefGoogle Scholar
  10. Bueno, O., & Shalkowski, S. (2013). Logical constants: A modalist approach. Noûs, 47, 1–24.CrossRefGoogle Scholar
  11. Bueno, O., & Shalkowski, S. (2015). Modalism and theoretical virtues: Toward an epistemology of modality. Philosophical Studies, 172, 671–689.CrossRefGoogle Scholar
  12. Chudnoff, E. (2013). Intuition. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. Descartes, R. (1644/1985). Principles of philosophy. In Descartes [1985], volume 1. Cambridge: Cambridge University Press.Google Scholar
  14. Descartes, R. (1985). The philosophical writings of Descartes (2 Vols., J. Cottingham, R. Stoothoff, & D. Murdoch, Trans.) Cambridge: Cambridge University Press.Google Scholar
  15. Divers, J. (2002). Possible worlds. London: Routledge.Google Scholar
  16. Field, H. (1989). Realism, mathematics and modality. Oxford: Basil Blackwell.Google Scholar
  17. Frege, G. (1884). The foundations of arithmetic. (English trans: J. L. Austin). Oxford: Blackwell, 1950.Google Scholar
  18. Gödel, K. (1964). What is Cantor’s continuum problem? In Benacerraf & Putnam (Eds.) [1983] (pp. 470–485).Google Scholar
  19. Hale, B., & Wright, C. (2001). The reason’s proper study. Oxford: Oxford University Press.CrossRefGoogle Scholar
  20. Hellman, G. (1989). Mathematics without numbers: Towards a modal-structural interpretation. Oxford: Clarendon.Google Scholar
  21. Hellman, G. (1996). Structuralism without structures. Philosophia Mathematica, 4, 100–123.CrossRefGoogle Scholar
  22. Hume, D. (1739/2000). A treatise of human nature. (D. F. Norton & M. J. Norton, Eds.). Oxford: Oxford University Press.Google Scholar
  23. Hume, D. (1748/1999). An enquiry concerning human understanding (T. L. Beauchamp, Ed.). Oxford: Oxford University Press.Google Scholar
  24. Lewis, D. (1986). On the plurality of worlds. Oxford: Blackwell.Google Scholar
  25. Linnebo, Ø., & Uzquiano, G. (2009). Which abstraction principles are acceptable? Some limitative results. British Journal for the Philosophy of Science, 60, 239–252.CrossRefGoogle Scholar
  26. Moore, G. (1982). Zermelo’s axiom of choice: Its origins, development and influence. New York: Springer.CrossRefGoogle Scholar
  27. Nozick, R. (1981). Philosophical explanations. Cambridge, MA: Harvard University Press.Google Scholar
  28. Priest, G. (2006). In contradiction (2nd expanded ed.). Oxford: Clarendon.Google Scholar
  29. Putnam, H. (1967/1979). Mathematics without foundations. Journal of Philosophy, 64. (Reprinted in Putnam [1979], pp. 43–59. Page references are to this volume).Google Scholar
  30. Putnam, H. (1979). Mathematics, matter and method (Philosophical Papers, 2nd ed., Vol. 1). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  31. Quine, W. V. (1960). Word and object. Cambridge, MA: MIT Press.Google Scholar
  32. Quine, W. V. (1981). Theories and things. Cambridge, MA: Harvard University Press.Google Scholar
  33. Shalkowski, S. (1994). The ontological ground of the alethic modality. Philosophical Review, 103, 669–688.CrossRefGoogle Scholar
  34. Williamson, T. (2007). The philosophy of philosophy. Oxford: Blackwell.CrossRefGoogle Scholar
  35. Wittgenstein, L. (1922). Tractactus Logico-Philosophicus (D. Pears, & B. McGuinness, Trans.). New York: Routledge and Kegan Paul.Google Scholar
  36. Zalta, E. (1983). Abstract objects: An introduction to axiomatic metaphysics. Dordrecht: D. Reidel.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  1. 1.Department of PhilosophyUniversity of MiamiCoral GablesUSA

Personalised recommendations