Skip to main content

Numerical Exploration of High Field Plasmonics in Different Scenarios

  • Chapter
  • First Online:
High Field Plasmonics

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter several physical scenarios involving High Field Plasmonics effects are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For comparison the pressure at the core of the Sun is \({\sim }10^{17}\,\text {Pa}\), according to BS05(AGS,OP) standard solar model [13].

  2. 2.

    This equation first appeared in [18], where spaceship propulsion with a terrestrial laser beam was envisaged as an interesting strategy for interstellar travel. In [18] the author acknowledge that an operational range of \({\sim }0.1\) light year would require a coherent hard x-ray source on Earth with a surface of \(1\,\text {km}^2\) and an x-ray mirror on the spaceship with a total surface of several \(\text {km}^2\), making the realization of this scheme “practically impossible in the next few decades”.

  3. 3.

    We expect a sub-wavelength grating to behave like a perfect mirror at large distances, with just some near-field perturbations(the evanescent modes).

  4. 4.

    These are the standard boundary conditions at an interface between a perfect metal and vacuum. In general, the boundary conditions for EM field at an interface prescribe that the electric field should have a continuous tangential component, while, for the magnetic field, the continuous component should be the perpendicular one. However, in a perfect conductor EM field is zero, thus these components should be zero at the interface.

  5. 5.

    This is due to the fact that \(\omega _p>> \omega _0\) for overdense targets. See Sect. 2.3 for more details.

  6. 6.

    We are in 2D geometry.

  7. 7.

    Not far from the density of completely ionized solid hydrogen.

  8. 8.

    When the simulation was performed, piccante code wasn’t already available.

  9. 9.

    To the knowledge of the author, there isn’t a completely “clean” way to deal with charged particles reaching the borders of the simulation box. An exception is represented by particles reaching a moving border, like when moving window method is used, provided that the border moves at the speed of light.

  10. 10.

    Reflections associated with a translation.

  11. 11.

    i.e. for a grating target if \(x_p\) is the x coordinate of the peaks and \(x_v\) is the x coordinate of the valleys, \(x_{cut}\) is fixed at \((x_p + x_v)/2\).

  12. 12.

    A plasmonic scheme consisting in two juxtaposed cylinders [60].

References

  1. A. Sgattoni, S. Sinigardi, L. Fedeli, F. Pegoraro, A. Macchi, Laser-driven Rayleigh–Taylor instability: plasmonic effects and three-dimensional structures. Phys. Rev. E 91, 013106 (2015)

    Article  ADS  Google Scholar 

  2. C.A.J. Palmer, J. Schreiber, S.R. Nagel, N.P. Dover, C. Bellei, F.N. Beg, S. Bott, R.J. Clarke, A.E. Dangor, S.M. Hassan, P. Hilz, D. Jung, S. Kneip, S.P.D. Mangles, K.L. Lancaster, A. Rehman, A.P.L. Robinson, C. Spindloe, J. Szerypo, M. Tatarakis, M. Yeung, M. Zepf, Z. Najmudin, Rayleigh–Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Phys. Rev. Lett. 108, 225002 (2012)

    Article  ADS  Google Scholar 

  3. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75(5), 056401 (2012)

    Article  ADS  Google Scholar 

  4. A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013)

    Article  ADS  Google Scholar 

  5. U. Teubner, P. Gibbon, High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009)

    Article  ADS  Google Scholar 

  6. M. Cerchez, A.L. Giesecke, C. Peth, M. Toncian, B. Albertazzi, J. Fuchs, O. Willi, T. Toncian, Generation of laser-driven higher harmonics from grating targets. Phys. Rev. Lett. 110, 065003 (2013)

    Article  ADS  Google Scholar 

  7. M.I. Stockman, Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  8. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  9. D.H. Sharp, An overview of Rayleigh–Taylor instability. Phys. D 12(1–3), 3–18 (1984)

    Article  MATH  Google Scholar 

  10. B. Eliasson, Instability of a thin conducting foil accelerated by a finite wavelength intense laser. New J. Phys. 17(3), 033026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, Dordrecht, 2013)

    Book  Google Scholar 

  12. A. Macchi, S. Veghini, F. Pegoraro, “Light sail” acceleration reexamined. Phys. Rev. Lett. 103, 085003 (2009)

    Article  ADS  Google Scholar 

  13. J.N. Bahcall, A.M. Serenelli, S. Basu, New solar opacities, abundances, helioseismology, and neutrino fluxes. Astrophys. J. Lett. 621(1), L85 (2005)

    Article  ADS  Google Scholar 

  14. F. Brunel, Anomalous absorption of high intensity subpicosecond laser pulses. Phys. Fluids (1958-1988) 31(9), 2714–2719 (1988)

    Article  Google Scholar 

  15. P. Gibbon, Efficient production of fast electrons from femtosecond laser interaction with solid targets. Phys. Rev. Lett. 73, 664–667 (1994)

    Article  ADS  Google Scholar 

  16. S.S. Bulanov, A. Brantov, V.Y. Bychenkov, V. Chvykov, G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed, V. Yanovsky, D.W. Litzenberg, K. Krushelnick, A. Maksimchuk, Accelerating monoenergetic protons from ultrathin foils by flat-top laser pulses in the directed-Coulomb-explosion regime. Phys. Rev. E 78, 026412 (2008)

    Google Scholar 

  17. A. Macchi, S. Veghini, T.V. Liseykina, F. Pegoraro, Radiation pressure acceleration of ultrathin foils. New J. Phys. 12(4), 045013 (2010)

    Article  ADS  Google Scholar 

  18. G. Marx, Interstellar vehicle propelled by terrestrial laser beam. Nature 211, 22–23 (1966)

    Article  ADS  Google Scholar 

  19. A. Sgattoni, S. Sinigardi, A. Macchi, High energy gain in three-dimensional simulations of light sail acceleration. Appl. Phys. Lett. 105(8), 084105 (2014)

    Article  ADS  Google Scholar 

  20. M. Tamburini, F. Pegoraro, A. Di Piazza, C.H. Keitel, A. Macchi, Radiation reaction effects on radiation pressure acceleration. New J. Phys. 12(12), 123005 (2010)

    Article  ADS  Google Scholar 

  21. R. Capdessus, P. McKenna, Influence of radiation reaction force on ultraintense laser-driven ion acceleration. Phys. Rev. E 91, 053105 (2015)

    Article  ADS  Google Scholar 

  22. D. Doria. Ion acceleration from ultrathin foils: dependence on target thickness and laser polarization, in Oral Contribution at the 42nd EPS Conference on Plasma Physics (Lisbon, 22–26 June 2015)

    Google Scholar 

  23. S. Goede, C. Roedel, M. Gauthier, W. Schumaker, M. MacDonald, J. Kim, R. Mishra, F. Fiuza, S. Glenzer, K. Zeil et al., Effect of the Rayleigh–Taylor-instability on radiation-pressure-accelerated protons from solid-density hydrogen jets. Bull. Am. Phys. Soc. 60 (2015)

    Google Scholar 

  24. F. Pegoraro, S.V. Bulanov, Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. Phys. Rev. Lett. 99, 065002 (2007)

    Article  ADS  Google Scholar 

  25. E. Ott, Nonlinear evolution of the Rayleigh–Taylor instability of a thin layer. Phys. Rev. Lett. 29, 1429–1432 (1972)

    Article  ADS  Google Scholar 

  26. C. Benedetti, A. Sgattoni, G. Turchetti, P. Londrillo, ALaDyn: a high-accuracy pic code for the Maxwell–Vlasov equations. IEEE Trans. Plasma Sci. 36(4), 1790–1798 (2008)

    Article  ADS  Google Scholar 

  27. A. Sgattoni, S. Sinigardi, L. Fedeli, piccante, release tailored for RT paper (2014)

    Google Scholar 

  28. M. Tamburini, T.V. Liseykina, F. Pegoraro, A. Macchi, Radiation-pressure-dominant acceleration: polarization and radiation reaction effects and energy increase in three-dimensional simulations. Phys. Rev. E 85, 016407 (2012)

    Article  ADS  Google Scholar 

  29. S.I. Abarzhi, Review of nonlinear dynamics of the unstable fluid interface: conservation laws and group theory. Phys. Scr. 2008(T132), 014012 (2008)

    Article  MathSciNet  Google Scholar 

  30. S.I. Abarzhi, Nonlinear three-dimensional Rayleigh–Taylor instability. Phys. Rev. E 59, 1729–1735 (1999)

    Google Scholar 

  31. Wikipedia (picture released as “public domain”). Byzantine marble pavement, Rome, 2007. Online; Accessed 28 June 2015

    Google Scholar 

  32. L. Michel, Symmetry defects and broken symmetry. Configurations hidden symmetry. Rev. Mod. Phys. 52, 617–651 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Schattschneider, The plane symmetry groups: their recognition and notation. Am. Math. Mon. 85(6), 439–450 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Macchi, A. Sgattoni, S. Sinigardi, M. Borghesi, M. Passoni, Advanced strategies for ion acceleration using high-power lasers. Plasma Phys. Control. Fusion 55(12), 124020 (2013)

    Article  ADS  Google Scholar 

  35. Y. Sentoku, K. Mima, S. Kojima, H. Ruhl, Magnetic instability by the relativistic laser pulses in overdense plasmas. Phys. Plasmas 7(2), 689–695 (2000)

    Article  ADS  Google Scholar 

  36. P. Mulser, D. Bauer, S. Hain, H. Ruhl, F. Cornolti, Present understanding of superintense laser-solid interaction. Laser Phys. 10(1), 231–240 (2000)

    Google Scholar 

  37. F. Califano, D. Del Sarto, F. Pegoraro, Three-dimensional magnetic structures generated by the development of the filamentation (Weibel) instability in the relativistic regime. Phys. Rev. Lett. 96, 105008 (2006)

    Article  ADS  Google Scholar 

  38. B.F. Lasinski, A.B. Langdon, S.P. Hatchett, M.H. Key, M. Tabak, Particle-in-cell simulations of ultra intense laser pulses propagating through overdense plasma for fast-ignitor and radiography applications. Phys. Plasmas 6(5), 2041–2047 (1999)

    Article  ADS  Google Scholar 

  39. Y. Sentoku, K. Mima, Z.M. Sheng, P. Kaw, K. Nishihara, K. Nishikawa, Three-dimensional particle-in-cell simulations of energetic electron generation and transport with relativistic laser pulses in overdense plasmas. Phys. Rev. E 65, 046408 (2002)

    Article  ADS  Google Scholar 

  40. A. L’Huillier, P. Balcou, High-order harmonic generation in rare gases with a 1-ps 1053-nm laser. Phys. Rev. Lett. 70, 774–777 (1993)

    Article  ADS  Google Scholar 

  41. P.M. Paul, E.S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H.G. Muller, P. Agostini, Observation of a train of attosecond pulses from high harmonic generation. Science 292(5522), 1689–1692 (2001)

    Article  ADS  Google Scholar 

  42. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  Google Scholar 

  43. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Isolated single-cycle attosecond pulses. Science 314(5798), 443–446 (2006)

    Article  ADS  Google Scholar 

  44. C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M. Laux, Y. Zhang, A. Blattermann, S. Hagstotz, T. Ding, R. Heck, J. Madronero, F. Martin, T. Pfeifer, Reconstruction and control of a time-dependent two-electron wave packet. Nature 516(7531), 374–378 (2014)

    Google Scholar 

  45. F. Krausz, M. Ivanov, Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    Article  ADS  Google Scholar 

  46. D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, A. Antonetti, Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses. Phys. Rev. A 52, R25–R27 (1995)

    Article  ADS  Google Scholar 

  47. M. Yeung, B. Dromey, C. Rödel, J. Bierbach, M. Wünsche, G. Paulus, T. Hahn, D. Hemmers, C. Stelzmann, G. Pretzler, M. Zepf, Near-monochromatic high-harmonic radiation from relativistic laser-plasma interactions with blazed grating surfaces. New J. Phys. 15(2), 025042 (2013)

    Article  ADS  Google Scholar 

  48. F. Quéré, C. Thaury, P. Monot, S. Dobosz, P. Martin, J.-P. Geindre, P. Audebert, Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006)

    Article  ADS  Google Scholar 

  49. S.V. Bulanov, N.M. Naumova, F. Pegoraro, Interaction of an ultrashort, relativistically strong laser pulse with an overdense plasma. Phys. Plasmas 1(3), 745–757 (1994)

    Article  ADS  Google Scholar 

  50. R. Lichters, J. Meyer-ter Vehn, A. Pukhov, Short-pulse laser harmonics from oscillating plasma surfaces driven at relativistic intensity. Phys. Plasmas 3(9), 3425–3437 (1996)

    Article  ADS  Google Scholar 

  51. T. Baeva, S. Gordienko, A. Pukhov, Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma. Phys. Rev. E 74, 046404 (2006)

    Article  ADS  Google Scholar 

  52. S. Gordienko, A. Pukhov, O. Shorokhov, T. Baeva, Relativistic doppler effect: universal spectra and zeptosecond pulses. Phys. Rev. Lett. 93, 115002 (2004)

    Article  ADS  Google Scholar 

  53. R.L. Sandberg, A. Paul, D.A. Raymondson, S. Hädrich, D.M. Gaudiosi, J. Holtsnider, R.I. Tobey, O. Cohen, M.M. Murnane, H.C. Kapteyn, C. Song, J. Miao, Y. Liu, F. Salmassi, Lensless diffractive imaging using tabletop coherent high-harmonic soft-X-ray beams. Phys. Rev. Lett. 99, 098103 (2007)

    Google Scholar 

  54. J.L. Sanz-Vicario, H. Bachau, F. Martín, Time-dependent theoretical description of molecular autoionization produced by femtosecond xuv laser pulses. Phys. Rev. A 73, 033410 (2006)

    Article  ADS  Google Scholar 

  55. S.G. Rykovanov, M. Geissler, J. Meyer ter Vehn, G.D. Tsakiris, Intense single attosecond pulses from surface harmonics using the polarization gating technique. New J. Phys. 10(2), 025025 (2008)

    Article  ADS  Google Scholar 

  56. Z.-Y. Chen, X.-Y. Li, L.-M. Chen, Y.-T. Li, W.-J. Zhu, Intense isolated few-cycle attosecond xuv pulses from overdense plasmas driven by tailored laser pulses. Opt. Express 22(12), 14803–14811 (2014)

    Google Scholar 

  57. X. Lavocat-Dubuis, J.-P. Matte, Numerical simulation of harmonic generation by relativistic laser interaction with a grating. Phys. Rev. E 80, 055401 (2009)

    Article  ADS  Google Scholar 

  58. X. Lavocat-Dubuis, J.-P. Matte, Numerical and theoretical study of the generation of extreme ultraviolet radiation by relativistic laser interaction with a grating. Phys. Plasmas 17(9), 093105 (2010)

    Article  ADS  Google Scholar 

  59. M. Yeung, M. Zepf, M. Geissler, B. Dromey, Angularly separated harmonic generation from intense laser interaction with blazed diffraction gratings. Opt. Lett. 36(12), 2333–2335 (2011)

    Article  ADS  Google Scholar 

  60. A. Aubry, D.Y. Lei, A.I. Fernández-Domínguez, Y. Sonnefraud, S.A. Maier, J.B. Pendry, Plasmonic light-harvesting devices over the whole visible spectrum. Nano Lett. 10(7), 2574–2579 (2010)

    Article  ADS  Google Scholar 

  61. A. Giugni, B. Torre, A. Toma, M. Francardi, M. Malerba, A. Alabastri, R. Proietti Zaccaria, M.I. Stockman, E. Di Fabrizio, Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8(11), 845–852 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fedeli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fedeli, L. (2017). Numerical Exploration of High Field Plasmonics in Different Scenarios. In: High Field Plasmonics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44290-7_6

Download citation

Publish with us

Policies and ethics