Skip to main content

Numerical Tools

  • Chapter
  • First Online:
High Field Plasmonics

Part of the book series: Springer Theses ((Springer Theses))

  • 582 Accesses

Abstract

As in many research fields, numerical simulations play an important role in plasma physics. Indeed, plasmas are complex physical systems and in several scenarios analytical theories are of limited applicability. Numerical simulations are often required to clarify the physical processes at play in certain conditions or to prepare experimental activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Suppose that each one of the six dimensions \(x,y,z,p_x,p_y,p_z\) is resolved with \(10^3\) grid points. Supposing that each grid node requires 4 bytes of memory (a standard single-precision float number) to be represented, the total memory requirement amounts to \({\sim }4\cdot 10^6\) Terabytes! This is approximately 4000 times the total RAM available at the top # 1 supercomputer in the world [9], as of June 2015.

  2. 2.

    Also affiliated at Politecnico di Milano when the project started.

  3. 3.

    This is often useful in order to save computational time, since in typical simulations longitudinal resolution is more critical than transversal resolution. In this case \(\Delta x\) can be smaller than \(\Delta y\) and \(\Delta z\).

  4. 4.

    These tests were performed with a 3D box completely filled with a uniform, low-temperature plasma. The simulation box was evenly split between the MPI tasks. In a weak scaling test the computational cost per MPI task is kept constant (i.e. if the number of MPI tasks is increased 2\(\times \), the simulation box is enlarged 2\(\times \)).Therefore, in the ideal case, the execution time should be the same for any number of MPI tasks. In the strong scaling tests instead, the size of the simulation box is kept constant. Thus increasing \(N{\times }\) the number of MPI tasks should lead to a \(N{\times }\) speed-up in the ideal case.

  5. 5.

    Even listing the content of a directory containing tens of thousands of files may take several seconds or tens of seconds on FERMI.

  6. 6.

    It is worth to stress that the main aim of these 2D simulations was to give an idea of the physical process at play, rather than reproducing experimental results faithfully.

  7. 7.

    The skin depth should be resolved at least with one point. As a consequence at least 50 points per \(\upmu \)m are required for 64 \(n_c\) densities. However with this resolution the 50 nm thin target would have been resolved with just 1–2 points. Thus a resolution of 120 points per \(\upmu \)m in the longitudinal direction was chosen.

References

  1. J.F. Hawley, C.F. Gammie, S.A. Balbus, Local three-dimensional magnetohydrodynamic simulations of accretion disks. APJ 440, 742 (1995)

    Google Scholar 

  2. B. Holst, R. Redmer, M.P. Desjarlais, Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. Phys. Rev. B 77, 184201 (2008)

    Article  ADS  Google Scholar 

  3. P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, London, 2005)

    Google Scholar 

  4. N.J. Sircombe, T.D. Arber, Valis: a split-conservative scheme for the relativistic 2d Vlasov–Maxwell system. J. Comput. Phys. 228(13), 4773–4788 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (CRC Press, Boca Raton, 2004)

    Google Scholar 

  6. J.M. Dawson, Particle simulation of plasmas. Rev. Mod. Phys. 55, 403–447 (1983)

    Article  ADS  Google Scholar 

  7. A. Grassi, L. Fedeli, A. Macchi, S.V. Bulanov, F. Pegoraro, Phase space dynamics after the breaking of a relativistic Langmuir wave in a thermal plasma. Eur. Phys. J. D, 68(6), 1–8 (2014)

    Google Scholar 

  8. A. Grassi, L. Fedeli, A. Sgattoni, A. Macchi, Vlasov simulation of laser-driven shock acceleration and ion turbulence. Plasma Phys. Control. Fusion 58(3), 034021 (2016)

    Article  ADS  Google Scholar 

  9. top500, Tianhe-2 (milkyway-2) (National University of Defense Technology, 2015); (online). Accessed 22 Sept 2015

    Google Scholar 

  10. T.D. Arber, K. Bennett, C.S. Brady, A. Lawrence-Douglas, M.G. Ramsay, N.J. Sircombe, P. Gillies, R.G. Evans, H. Schmitz, A.R. Bell, C.P. Ridgers, Contemporary particle-in-cell approach to laser-plasma modelling. Plasma Phys. Control. Fusion 57(11), 113001 (2015)

    Article  ADS  Google Scholar 

  11. J.U. Brackbill, On Energy and Momentum Conservation in Particle-in-Cell Simulation. ArXiv e-prints (2015)

    Google Scholar 

  12. D.L. Bruhwiler, D.A. Dimitrov, J.R. Cary, E. Esarey, W. Leemans, R.E. Giacone, Particle-in-cell simulations of tunneling ionization effects in plasma-based accelerators. Phys. Plasmas 10(5), 2022–2030 (2003)

    Article  ADS  Google Scholar 

  13. C.K. Birdsall, Particle-in-cell charged-particle simulations, plus Monte Carlo collisions with neutral atoms, PIC-MCC. IEEE Trans. Plasma Sci. 19(2), 65–85 (1991)

    Article  ADS  Google Scholar 

  14. V. Vahedi, M. Surendra, A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges. Comput. Phys. Commun. 87(1–2), 179–198 (1995); Particle Simulation Methods

    Google Scholar 

  15. M. Tamburini, F. Pegoraro, A. Di Piazza, C.H. Keitel, A. Macchi, Radiation reaction effects on radiation pressure acceleration. New J. Phys. 12(12), 123005 (2010)

    Article  ADS  Google Scholar 

  16. M. Lobet, E. d’Humierès, M. Grech, C. Ruyer, X. Davoine, L. Gremillet, Modeling of radiative and quantum electrodynamics effects in PIC simulations of ultra-relativistic laser–plasma interaction. J. Phys. Conf. Ser. 688(1), 012058 IOP Publishing (2016)

    Google Scholar 

  17. F. Rossi, P. Londrillo, A. Sgattoni, S. Sinigardi, G. Turchetti, Towards robust algorithms for current deposition and dynamic load-balancing in a gpu particle in cell code. AIP Conf. Proc. 1507(1), 184–192 (2012)

    ADS  Google Scholar 

  18. H. Burau, R. Widera, W. Honig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T.E. Cowan, R. Sauerbrey, M. Bussmann, PIConGPU: a fully relativistic particle-in-cell code for a GPU cluster. IEEE Trans. Plasma Sci. 38(10), 2831–2839 (2010)

    Article  ADS  Google Scholar 

  19. A. Sgattoni, L. Fedeli, S. Sinigardi, A. Marocchino, A. Macchi, V. Weinberg, A. Karmakar, Optimising Piccante - An Open Source Particle-in-Cell Code for Advanced Simulations on Tier-0 Systems. Technical report, PRACE white papers (2015). (online). Accessed 23 May 2015

    Google Scholar 

  20. C. Benedetti, A. Sgattoni, G. Turchetti, P. Londrillo, ALaDyn: a high-accuracy pic code for the Maxwell–Vlasov equations. IEEE Trans. Plasma Sci. 36(4), 1790–1798 (2008)

    Article  ADS  Google Scholar 

  21. S. Sgattoni, L. Fedeli, S. Sinigardi, A. Marocchino, Piccante: a spicy massively parallel fully-relativistic electromagnetic 3D particle-in-cell code (2015). http://aladyn.github.io/piccante/

  22. D.C. Ince, L. Hatton, J. Graham-Cumming, The case for open computer programs. Nature 482(7386), 485–488 (2012)

    Google Scholar 

  23. S. Sgattoni, L. Fedeli, S. Sinigardi, A. Marocchino, Set of tools for reading piccante output files (2015). http://github.com/ALaDyn/tools-piccante

  24. Kitware, Paraview 4.3: an open-source, multi-platform data analysis and visualization application (2015). http://www.paraview.org/

  25. Lawrence Livermore National Laboratory, Visit 2.9.2: an open source, interactive, scalable, visualization, animation and analysis tool (2015). http://www.paraview.org/

  26. T. Williams, C. Kelley, et al., Gnuplot 5.0: an interactive plotting program (2015). http://gnuplot.sourceforge.net/

  27. W.H.A. Schilders, E.J.W.T.E.R. Maten, P.G. Ciarlet, Numerical Methods in Electromagnetics: Special Volume. Handbook of Numerical Analysis (Elsevier, Amsterdam, 2005)

    Google Scholar 

  28. P. Yu, X. Xu, V.K. Decyk, F. Fiuza, J. Vieira, F.S. Tsung, R.A. Fonseca, W. Lu, L.O. Silva, W.B. Mori, Elimination of the numerical Cerenkov instability for spectral em-pic codes. Comput. Phys. Commun. 192, 32–47 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. M. Frigo, S.G. Johnson, The design and implementation of FFTW3. Proc. IEEE 93(2), 216–231 (2005); Special issue on “Program Generation, Optimization, and Platform Adaptation”

    Google Scholar 

  30. M. D’Angelo, L. Fedeli, A. Sgattoni, F. Pegoraro, A. Macchi, Particle acceleration and radiation friction effects in the filamentation instability of pair plasmas. Mon. Not. R. Astron. Soc. 451(4), 3460–3467 (2015)

    Article  ADS  Google Scholar 

  31. L.O. Silva, R.A. Fonseca, J.W. Tonge, J.M. Dawson, W.B. Mori, M.V. Medvedev, Interpenetrating plasma shells: near-equipartition magnetic field generation and nonthermal particle acceleration. Astrophys. J. Lett. 596(1), L121 (2003)

    Article  ADS  Google Scholar 

  32. M.C. Begelman, R.D. Blandford, M.J. Rees, Theory of extragalactic radio sources. Rev. Mod. Phys. 56, 255–351 (1984)

    Article  ADS  Google Scholar 

  33. P. Blasi, E. Amato, positrons from pulsar winds, in High-Energy Emission from Pulsars and their Systems, Astrophysics and Space Science Proceedings, ed. by Diego F. Torres, Nanda Rea (Springer, Berlin, 2011), pp. 623–641

    Chapter  Google Scholar 

  34. A. Bret, L. Gremillet, M.E. Dieckmann, Multidimensional electron beam-plasma instabilities in the relativistic regime. Phys. Plasmas 17(12), 120501 (2010)

    Article  ADS  Google Scholar 

  35. F. Califano, F. Pegoraro, S.V. Bulanov, Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas. Phys. Rev. E 56, 963–969 (1997)

    Article  ADS  Google Scholar 

  36. J. Braenzel, A.A. Andreev, K. Platonov, M. Klingsporn, L. Ehrentraut, W. Sandner, M. Schnürer, Coulomb-driven energy boost of heavy ions for laser-plasma acceleration. Phys. Rev. Lett. 114, 124801 (2015)

    Article  ADS  Google Scholar 

  37. B.M. Hegelich, B. Albright, P. Audebert, A. Blazevic, E. Brambrink, J. Cobble, T. Cowan, J. Fuchs, J.C. Gauthier, C. Gautier, M. Geissel, D. Habs, R. Johnson, S. Karsch, A. Kemp, S. Letzring, M. Roth, U. Schramm, J. Schreiber, K.J. Witte, J.C. Fernández, Spectral properties of laser-accelerated mid-Z MeV/u ion beamsa). Phys. Plasmas 12(5), 056314 (2005)

    Google Scholar 

  38. M. Hegelich, S. Karsch, G. Pretzler, D. Habs, K. Witte, W. Guenther, M. Allen, A. Blazevic, J. Fuchs, J.C. Gauthier, M. Geissel, P. Audebert, T. Cowan, M. Roth, Mev ion jets from short-pulse-laser interaction with thin foils. Phys. Rev. Lett. 89, 085002 (2002)

    Article  ADS  Google Scholar 

  39. B.M. Hegelich, B.J. Albright, J. Cobble, K. Flippo, S. Letzring, M. Paffett, H. Ruhl, J. Schreiber, R.K. Schulze, J.C. Fernández, Laser acceleration of quasi-monoenergetic MeV ion beams. Nature 439(7075), 441–444 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fedeli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fedeli, L. (2017). Numerical Tools. In: High Field Plasmonics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44290-7_3

Download citation

Publish with us

Policies and ethics