Skip to main content

Introduction on High Intensity Laser-Plasma Interaction and High Field Plasmonics

  • Chapter
  • First Online:
High Field Plasmonics

Part of the book series: Springer Theses ((Springer Theses))

  • 643 Accesses

Abstract

This dissertation deals manly with the attempt to extend the study of plasmonic effects in the ultra-high intensity (beyond \(10^{18}\,\text {W/cm}^2\)) laser-matter interaction. Plasmonics, which is the study of surface plasmons, is a mature research field. However, surface plasmons are generally excited with low-intensity laser pulses. The study of plasmonic effects when ultra-high intensity lasers are involved is an almost completely unexplored ground. In this regime, which will be referred as High Field Plasmonics in the following, relativistic, strongly non-linear effects are expected to take place.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The first Laser was preceded by the first Maser in 1953 [1], operating in the microwave region of the electromagnetic spectrum. Basic laser physics is beyond the scope of this dissertation and the interested reader is referred to [2].

  2. 2.

    For a comparison, the average electrical power produced on Earth is \({\sim }\)2–3 TW [9]. Thus a PW class laser system is hundreds of times more powerful than the total electric output of the Earth.

  3. 3.

    An audio signal with similar properties recalls the chirping of birds.

  4. 4.

    Ti:Sapphire laser systems operate in the 1–10 Hz frequency range (i.e. one shot every 0.1–1 s), mainly due to issues related to the amplifying stages.

  5. 5.

    Fibre-based lasers can operate in the kW regime with a wall-plug efficiency \(\sim \)30 %.

  6. 6.

    Possible applications of a laser built according to this concept include space debris control [26] and production of Tc 99 m [27], a radioactive isotope of medical interest.

  7. 7.

    The critical intensity for ionization of any material with single photon processes is \({\sim }3.5\times 10^{16}\,\text {W/cm}^2\).

  8. 8.

    The interested reader can found a thorough discussion of the rich physics of EM waves propagation in plasmas in [34].

  9. 9.

    As for a typical Ti:Sapphire laser system.

  10. 10.

    Phenomena like self-focusing, higher frequency generation ...may take place and concepts like the refraction index and the dispersion relation cannot be ported straightforwardly in this regime.

  11. 11.

    Though not manifestly covariant, f(xp) can be proven to be a Lorentz scalar using the ancillary function \(\mathcal {N}(x,p) = \frac{1}{p_0} \delta (p^0 - \sqrt{p^2 + m^2 c^2})f(x,p)\). It is possible to show that \(\mathcal {N}(x,p) = \dfrac{1}{mc}\int d\tau \langle {\sum \limits _{i=1}^{N} \delta ^{4}\left( {{x}-{x}_i(t)}\right) \delta ^{4}\left( {{p} - {p}_i(t)}\right) }\rangle \), which is a Lorentz scalar (\(\tau \) is the proper time). Moreover, it is trivial to show that \(\theta (p^0) \delta (p^\mu p_\mu - m^2c^2) = \dfrac{\delta (p^0-\sqrt{\mathbf {p}^2+m^2c^2})}{2p^0}\). Finally, since using the previous result \(\mathcal {N}(x,p) = \theta (p^0) \delta (p^\mu p_\mu - m^2c^2) f(x,p)\), we can conclude that f(xp) is a Lorentz scalar.

  12. 12.

    This estimated energy is called the “ponderomotive energy”.

  13. 13.

    Normally a layer of hydrocarbon contaminants is always present on the target surfaces.

  14. 14.

    The excitation of surface waves in relativistic laser-matter interaction was first proposed in [86] but the topic has remained essentially unexplored up to now.

  15. 15.

    Without using an EM wave, a SP can be excited also with accelerated charged particles.

  16. 16.

    Field enhancement exceeding 100\(\times \) are reported in the literature.

References

  1. J.P. Gordon, H.J. Zeiger, C.H. Townes, The maser new type of microwave amplifier, frequency standard, and spectrometer. Phys. Rev. 99, 1264–1274 (1955)

    Article  ADS  Google Scholar 

  2. O. Svelto, D.C. Hanna, Principles of Lasers (Springer, Berlin, 2009)

    Google Scholar 

  3. T.H. Maiman, Stimulated optical radiation in ruby. Nature 187, 493–494 (1960)

    Google Scholar 

  4. (editorial). Fifty brilliant years. Nat. Mater. (2010)

    Google Scholar 

  5. V. Yanovsky, V. Chvykov, G. Kalinchenko, P. Rousseau, T. Planchon, T. Matsuoka, A. Maksimchuk, J. Nees, G. Cheriaux, G. Mourou, K. Krushelnick, Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. Opt. Express 16(3), 2109–2114 (2008)

    Article  ADS  Google Scholar 

  6. Wikipedia (picture released as “public domain”). History of laser intensity (2007); (online). Accessed 01 May 2016

    Google Scholar 

  7. F.J. McClung, R.W. Hellwarth, Giant optical pulsations from ruby. J. Appl. Phys. 33(3), 828–829 (1962)

    Article  ADS  Google Scholar 

  8. A.H. Haus, Mode-locking of lasers. IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000)

    Article  Google Scholar 

  9. International Energy Agency (ed.), Key World Energy Statistics (IEA, 2014)

    Google Scholar 

  10. J.E. Geusic, H.M. Marcos, L.G. Van Uitert, Laser oscillations in Nd-doped yttrium aluminium, yttrium gallium and gadolinium garnets. Appl. Phys. Lett. 4(10), 182 (1964)

    Google Scholar 

  11. C.K.N. Patel, Continuous-wave laser action on vibrational-rotational transitions of CO\(_2\). Phys. Rev. 136, A1187–A1193 (1964)

    Article  ADS  Google Scholar 

  12. I.V. Pogorelsky, I. Ben-Zvi, J. Skaritka, M. Babzien, M.N. Polyanskiy, Z. Najmudin, N. Dover, W. Lu, New opportunities for strong-field LPI research in the mid-IR. Proc. SPIE 9509, 95090P–95090P-10 (2015)

    Google Scholar 

  13. M.N. Polyanskiy, M. Babzien, I. Pogorelsky, V. Yakimenko. Ultrashort-pulse CO\(_2\) lasers: ready for the race to petawatt? Proc. SPIE {\bf 8677}, 86770G–86770G-6 (2013)

    Google Scholar 

  14. D. Strickland, G. Mourou, Compression of amplified chirped optical pulses. Opt. Commun. 55(6), 447–449 (1985)

    Article  ADS  Google Scholar 

  15. Wikipedia (figure released as “public domain”). Chirped pulse amplification (2006); (online). Accessed 01 May 2016

    Google Scholar 

  16. B. Dromey, S. Kar, M. Zepf, P. Foster, The plasma mirror - a subpicosecond optical switch for ultrahigh power lasers. Rev. Sci. Instrum. 75(3), 645–649 (2004)

    Article  ADS  Google Scholar 

  17. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. d’Oliveira, P. Audebert, R. Marjoribanks, Ph. Martin, Plasma mirrors for ultrahigh-intensity optics. Nat. Phys. 3, 424–429 (2007)

    Google Scholar 

  18. C. Danson, D. Hillier, N. Hopps, D. Neely, Petawatt class lasers worldwide. High Power Laser Sci. Eng. 3 (2015)

    Google Scholar 

  19. I.W. Choi, Upgrade to 4 PW of the PULSER laser system, CoReLS, Institute for Basic Science, GIST, Gwangju, South Korea. personal communication

    Google Scholar 

  20. G. Chériaux, F. Giambruno, A. Fréneaux, F. Leconte, L.P. Ramirez, P. Georges, F. Druon, D.N. Papadopoulos, A. Pellegrina, C. Le Blanc, I. Doyen, L. Legat, J.M. Boudenne, G. Mennerat, P. Audebert, G. Mourou, F. Mathieu, J.P. Chambaret, Apollon-10P: status and implementation. AIP Conf. Proc. 1462(1), 78–83 (2012)

    Google Scholar 

  21. C. Hernandez-Gomez, S.P. Blake, O. Chekhlov, R.J. Clarke, A.M. Dunne, M. Galimberti, S. Hancock, R. Heathcote, P. Holligan, A. Lyachev, P. Matousek, I.O. Musgrave, D. Neely, P.A. Norreys, I. Ross, Y. Tang, T.B. Winstone, B.E. Wyborn, J. Collier, The Vulcan 10 PW project. J. Phys.: Conf. Ser. 244(3), 032006 (2010)

    ADS  Google Scholar 

  22. A. Dubietis, G. Jonušauskas, A. Piskarskas, Powerful femtosecond pulse generation by chirped and stretched pulse parametric amplification in BBO crystal. Opt. Commun. 88(4–6), 437–440 (1992)

    Article  ADS  Google Scholar 

  23. I.N. Ross, P. Matousek, M. Towrie, A.J. Langley, J.L. Collier, The prospects for ultrashort pulse duration and ultrahigh intensity using optical parametric chirped pulse amplifiers. Opt. Commun. 144(1–3), 125–133 (1997)

    Article  ADS  Google Scholar 

  24. I.N. Ross, P. Matousek, G.H.C. New, K. Osvay, Analysis and optimization of optical parametric chirped pulse amplification. J. Opt. Soc. Am. B 19(12), 2945–2956 (2002)

    Article  ADS  Google Scholar 

  25. X. Liang, L. Yu, L. Xu, Y. Chu, Y. Xu, C. Wang, X. Lu, Y. Leng, R. Li, Z. Xu. Latest progress and research status of ultra-high intensity lasers at siom, in Advanced Solid State Lasers (Optical Society of America, 2014), p. AM1A.1

    Google Scholar 

  26. T. Ebisuzaki, M.N. Quinn, S. Wada, L.W. Piotrowski, Y. Takizawa, M. Casolino, M.E. Bertaina, P. Gorodetzky, E. Parizot, T. Tajima, R. Soulard, G. Mourou, Demonstration designs for the remediation of space debris from the international space station. Acta Astronaut. 112, 102–113 (2015)

    Article  ADS  Google Scholar 

  27. VYu. Bychenkov, A.V. Brantov, G. Mourou, Tc-99m production with ultrashort intense laser pulses. Laser Particle Beams 32, 605–611 (2014)

    Article  Google Scholar 

  28. M. Gerard, B. Brocklesby, T. Tajima, J.J. Limpert, The future is fibre accelerators. Nat. Photonics 7, 258–261 (2013)

    Google Scholar 

  29. C. Labaune, D. Hulin, A. Galvanauskas, G.A. Mourou, On the feasibility of a fiber-based inertial fusion laser driver. Opt. Commun. 281(15–16), 4075–4080 (2008)

    Article  ADS  Google Scholar 

  30. P. Gibbon, Short Pulse Laser Interactions with Matter (Imperial College Press, London, 2005)

    Book  MATH  Google Scholar 

  31. A. Macchi, A Superintense Laser-Plasma Interaction Theory Primer (Springer, Netherlands, 2013)

    Book  Google Scholar 

  32. P. Mulser, D. Bauer, High Power Laser-Matter Interaction, vol. 238 (Springer, Berlin, 2010)

    MATH  Google Scholar 

  33. S.R. Groot, W.A. Leeuwen, C.G. van Weert, Relativistic Kinetic Theory: Principles and Applications (North-Holland, Amsterdam, 1980)

    Google Scholar 

  34. A.W. Trivelpiece, N.A. Krall, Principles of Plasma Physics (McGraw-Hill, Englewood Cliffs, 1973)

    Google Scholar 

  35. J.D. Jackson, J.D. Jackson, Classical Electrodynamics, vol. 3 (Wiley, New York, 1962)

    MATH  Google Scholar 

  36. A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013)

    Article  ADS  Google Scholar 

  37. F. Brunel, Anomalous absorption of high intensity subpicosecond laser pulses. Phys. Fluids (1958–1988) 31(9), 2714–2719 (1988)

    Google Scholar 

  38. H. Popescu, S.D. Baton, F. Amiranoff, C. Rousseaux, M. Rabec Le Gloahec, J.J. Santos, L. Gremillet, M. Koenig, E. Martinolli, T. Hall, J.C. Adam, A. Heron, D. Batani, Subfemtosecond, coherent, relativistic, and ballistic electron bunches generated at \(\omega _0\) and 2\(\omega _0\) in high intensity laser-matter interaction. Phys. Plasmas 12(6), 063106 (2005)

    Google Scholar 

  39. P. Mulser, H. Ruhl, J. Steinmetz, Routes to irreversibility in collective laser-matter interaction. Laser Particle Beams 19, 23–28 (2001)

    Article  Google Scholar 

  40. W.L. Kruer, K. Estabrook, J\(\times \)B heating by very intense laser light. Phys. Fluids 28(1), 430–432 (1985)

    Google Scholar 

  41. C. Perego, A. Zani, D. Batani, M. Passoni, Extensive comparison among target normal sheath acceleration theoretical models. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 653(1), 89–93 (2011); Superstrong 2010

    Google Scholar 

  42. M. Lontano, M. Passoni, Electrostatic field distribution at the sharp interface between high density matter and vacuum. Phys. Plasmas 13(4), 042102 (2006)

    Google Scholar 

  43. L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics Series (Book 2), vol. 2 (The Classical Theory of Fields), chapter 76 (Butterworth-Heinemann, London, 1980)

    Google Scholar 

  44. M. Tamburini, F. Pegoraro, A. Di Piazza, C.H. Keitel, A. Macchi, Radiation reaction effects on radiation pressure acceleration. New J. Phys. 12(12), 123005 (2010)

    Article  ADS  Google Scholar 

  45. A. Di Piazza, Exact solution of the Landau-Lifshitz equation in a plane wave. Lett. Math. Phys. 83(3), 305–313 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Quantum radiation reaction effects in multiphoton compton scattering. Phys. Rev. Lett. 105, 220403 (2010)

    Article  Google Scholar 

  47. T. Tajima, J.M. Dawson, Laser electron accelerator. Phys. Rev. Lett. 43, 267–270 (1979)

    Article  ADS  Google Scholar 

  48. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, V. Malka, A laser-plasma accelerator producing monoenergetic electron beams. Nature 431, 541–544 (2004)

    Google Scholar 

  49. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C.B. Schroeder, Cs. Tóth, J. Daniels, D.E. Mittelberger, S.S. Bulanov, J.-L. Vay, C.G.R. Geddes, E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014)

    Google Scholar 

  50. H.T. Kim, K.H. Pae, H.J. Cha, I.J. Kim, T.J. Yu, J.H. Sung, S.K. Lee, T.M. Jeong, J. Lee, Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses. Phys. Rev. Lett. 111, 165002 (2013)

    Article  ADS  Google Scholar 

  51. C. Benedetti, C.B. Schroeder, E. Esarey, W.P. Leemans, Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators). Phys. Plasmas 21(5), 056706 (2014)

    Google Scholar 

  52. S. Corde, E. Adli, J.M. Allen, W. An, C.I. Clarke, C.E. Clayton, J.P. Delahaye, J. Frederico, S. Gessner, S.Z. Green, M.J. Hogan, C. Joshi, N. Lipkowitz, M. Litos, W. Lu, K.A. Marsh, W.B. Mori, M. Schmeltz, N. Vafaei-Najafabadi, D. Walz, V. Yakimenko, G. Yocky, Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield. Nature 524, 442–445 (2015)

    Google Scholar 

  53. H. Daido, M. Nishiuchi, A.S. Pirozhkov, Review of laser-driven ion sources and their applications. Rep. Prog. Phys. 75(5), 056401 (2012)

    Article  ADS  Google Scholar 

  54. M. Lewenstein, Ph Balcou, MYu. Ivanov, A. L’Huillier, P.B. Corkum, Theory of high-harmonic generation by low-frequency laser fields. Phys. Rev. A 49, 2117–2132 (1994)

    Google Scholar 

  55. P.B. Corkum, Plasma perspective on strong field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993)

    Article  ADS  Google Scholar 

  56. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, M. Nisoli, Isolated single-cycle attosecond pulses. Science 314(5798), 443–446 (2006)

    Article  ADS  Google Scholar 

  57. E.J. Takahashi, P. Lan, T. Okino, Y. Furukawa, Y. Nabekawa, K. Yamanouchi, K. Midorikawa, Intense attosecond pulses for probing ultrafast molecular dynamics, in Ultrafast Phenomena XIX, vol. 162 of Springer Proceedings in Physics, ed. by K. Yamanouchi, S. Cundiff, R. de Vivie-Riedle, M. Kuwata-Gonokami, L. DiMauro (Springer, Berlin, 2015), pp. 16–19

    Google Scholar 

  58. U. Teubner, P. Gibbon, High-order harmonics from laser-irradiated plasma surfaces. Rev. Mod. Phys. 81, 445–479 (2009)

    Article  ADS  Google Scholar 

  59. F. Quéré, C. Thaury, P. Monot, S. Dobosz, J.-P. Ph Martin, P.Audebert Geindre, Coherent wake emission of high-order harmonics from overdense plasmas. Phys. Rev. Lett. 96, 125004 (2006)

    Article  ADS  Google Scholar 

  60. S. Corde, K. Ta, Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Femtosecond x rays from laser-plasma accelerators. Rev. Mod. Phys. 85, 1–48 (2013)

    Google Scholar 

  61. G. Sarri, D.J. Corvan, W. Schumaker, J.M. Cole, A. Di Piazza, H. Ahmed, C. Harvey, C.H. Keitel, K. Krushelnick, S.P.D. Mangles, Z. Najmudin, D. Symes, A.G.R. Thomas, M. Yeung, Z. Zhao, M. Zepf, Ultrahigh brilliance multi-MeV \(\gamma \)-ray beams from nonlinear relativistic Thomson scattering. Phys. Rev. Lett. 113, 224801 (2014)

    Article  ADS  Google Scholar 

  62. H.W. Koch, J.W. Motz, Bremsstrahlung cross-section formulas and related data. Rev. Mod. Phys. 31, 920–955 (1959)

    Article  ADS  Google Scholar 

  63. H. Schwoerer, P. Gibbon, S. Düsterer, R. Behrens, C. Ziener, C. Reich, R. Sauerbrey, MeV x-rays and photoneutrons from femtosecond laser-produced plasmas. Phys. Rev. Lett. 86, 2317–2320 (2001)

    Article  ADS  Google Scholar 

  64. I. Pomerantz, E. McCary, A.R. Meadows, A. Arefiev, A.C. Bernstein, C. Chester, J. Cortez, M.E. Donovan, G. Dyer, E.W. Gaul, D. Hamilton, D. Kuk, A.C. Lestrade, C. Wang, T. Ditmire, B.M. Hegelich, Ultrashort pulsed neutron source. Phys. Rev. Lett. 113, 184801 (2014)

    Article  ADS  Google Scholar 

  65. Y. Arikawa, M. Utsugi, A. Morace, T. Nagai, Y. Abe, S. Kojima, S. Sakata, H. Inoue, S. Fujioka, Z. Zhang, H. Chen, J. Park, J. Williams, T. Morita, Y. Sakawa, Y. Nakata, J. Kawanaka, T. Jitsuno, N. Sarukura, N. Miyanaga, H. Azechi, High-intensity neutron generation via laser-driven photonuclear reaction. Plasma Fusion Res. 10, 2404003 (2015)

    Google Scholar 

  66. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C.E. Hamilton, B.M. Hegelich, R.P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J.L. Tybo, F. Wagner, S.A. Wender, C.H. Wilde, G.A. Wurden, Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802 (2013)

    Article  ADS  Google Scholar 

  67. C. Gongyin, R.C. Lanza, Fast neutron resonance radiography for elemental imaging: theory and applications. IEEE Trans. Nucl. Sci. 49(4), 1919–1924 (2002)

    Article  ADS  Google Scholar 

  68. C.L. Fink, B.J. Micklich, T.J. Yule, P. Humm, L. Sagalovsky, M.M. Martin, Evaluation of neutron techniques for illicit substance detection. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 99(1–4), 748–752 (1995); Application of Accelerators in Research and Industry’94

    Google Scholar 

  69. J. Rynes, J. Bendahan, T. Gozani, R. Loveman, J. Stevenson, C. Bell, Gamma-ray and neutron radiography as part of a pulsed fast neutron analysis inspection system. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 422(1–3), 895–899 (1999)

    Google Scholar 

  70. J.C. Overley, M.S. Chmelik, R.J. Rasmussen, R.M.S. Schofield, H.W. Lefevre, Explosives detection through fast-neutron time-of-flight attenuation measurements. Nucl. Instrum. Methods Phys. Res. Sect. B: Beam Interact. Mater. Atoms 99(1–4), 728–732 (1995). Application of Accelerators in Research and Industry’94

    Google Scholar 

  71. J.E. Eberhardt, S. Rainey, R.J. Stevens, B.D. Sowerby, J.R. Tickner, Fast neutron radiography scanner for the detection of contraband in air cargo containers. Appl. Radiat. Isot. 63(2), 179–188 (2005)

    Article  Google Scholar 

  72. C. Freiburghaus, S. Rosswog, F.-K. Thielemann, r-process in neutron star mergers. Astrophys. J. Lett. 525(2), L121 (1999)

    Article  ADS  Google Scholar 

  73. S. Bouquet, E. Falize, C. Michaut, C.D. Gregory, B. Loupias, T. Vinci, M. Koenig, From lasers to the universe: scaling laws in laboratory astrophysics. High Energy Density Phys. 6(4), 368–380 (2010)

    Article  ADS  Google Scholar 

  74. É Falize, A. Ravasio, B. Loupias, A. Dizière, C.D. Gregory, C. Michaut, C. Busschaert, C. Cavet, M. Koenig, High-energy density laboratory astrophysics studies of accretion shocks in magnetic cataclysmic variables. High Energy Density Phys. 8(1), 1–4 (2012). cited By 7

    Google Scholar 

  75. G. Sarri, K. Poder, J.M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira, M. Zepf, Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nat. Commun. 6, 6747 (2015)

    Google Scholar 

  76. H. Chen, F. Fiuza, A. Link, A. Hazi, M. Hill, D. Hoarty, S. James, S. Kerr, D.D. Meyerhofer, J. Myatt, J. Park, Y. Sentoku, G.J. Williams, Scaling the yield of laser-driven electron-positron jets to laboratory astrophysical applications. Phys. Rev. Lett. 114, 215001 (2015)

    Article  ADS  Google Scholar 

  77. D. Batani, A. Morelli, M. Tomasini, A. Benuzzi-Mounaix, F. Philippe, M. Koenig, B. Marchet, I. Masclet, M. Rabec, Ch. Reverdin, R. Cauble, P. Celliers, G. Collins, L. Da Silva, T. Hall, M. Moret, B. Sacchi, P. Baclet, B. Cathala, Equation of state data for iron at pressures beyond 10 Mbar. Phys. Rev. Lett. 88, 235502 (2002)

    Article  ADS  Google Scholar 

  78. A.L. Kritcher, T. Döppner, D. Swift, J. Hawreliak, G. Collins, J. Nilsen, B. Bachmann, E. Dewald, D. Strozzi, S. Felker, O.L. Landen, O. Jones, C. Thomas, J. Hammer, C. Keane, H.J. Lee, S.H. Glenzer, S. Rothman, D. Chapman, D. Kraus, P. Neumayer, R.W. Falcone, Probing matter at Gbar pressures at the NIF. High Energy Density Phys. 10, 27–34 (2014)

    Article  ADS  Google Scholar 

  79. M.A. Purvis, V.N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B.M. Luther, L. Yin, S. Wang, J.J. Rocca, Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Photonics 7, 796–800 (2013)

    Google Scholar 

  80. A. Di Piazza, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84, 1177–1228 (2012)

    Article  ADS  Google Scholar 

  81. Surface plasmon resurrection (editorial). Nat. Photonics 6, 707 (2012)

    Google Scholar 

  82. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  83. D.K. Gramotnev, S.I. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nat. Photonics 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  84. A.G. Brolo, Plasmonics for future biosensors. Nat. Photonics 6(11), 709–713 (2012)

    Article  ADS  Google Scholar 

  85. E. Ozbay, Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758), 189–193 (2006)

    Article  ADS  Google Scholar 

  86. V.A. Vshivkov, N.M. Naumova, F. Pegoraro, S.V. Bulanov, Nonlinear electrodynamics of the interaction of ultra-intense laser pulses with a thin foil. Phys. Plasmas 5(7), 2727–2741 (1998)

    Article  ADS  Google Scholar 

  87. J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons. Rep. Prog. Phys. 70(1), 1 (2007)

    Article  ADS  Google Scholar 

  88. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)

    Google Scholar 

  89. A. Sgattoni, L. Fedeli, G. Cantono, T. Ceccotti, A. Macchi, High field plasmonics and laser-plasma acceleration in solid targets. Plasma Phys. Control. Fusion 58(1), 014004 (2016)

    Article  ADS  Google Scholar 

  90. A. Ono, H. Sano, W. Inami, Y. Kawata, Surface plasmon excitation and localization by metal-coated axicon prism. Micromachines 3(1), 55 (2012)

    Article  Google Scholar 

  91. N. Vasilantonakis, M.E. Nasir, W. Dickson, G.A. Wurtz, A.V. Zayats, Bulk plasmon-polaritons in hyperbolic nanorod metamaterial waveguides. Laser Photonics Rev. 9(3), 345–353 (2015)

    Article  Google Scholar 

  92. H.H. Nguyen, J. Park, S. Kang, M. Kim, Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15(5), 10481–10510 (2015)

    Article  Google Scholar 

  93. D.K. Gramotnev, S.I. Bozhevolnyi, Nanofocusing of electromagnetic radiation. Nat. Photonics 8, 13–22 (2014)

    Google Scholar 

  94. D.W. Pohl, UCh. Fischer, U.T. Dürig, Scanning near-field optical microscopy (SNOM). J. Microsc. 152(3), 853–861 (1988)

    Google Scholar 

  95. C.M. Soukoulis, M. Wegener, Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat. Photonics 5, 523–530 (2011)

    Google Scholar 

  96. A.V. Kildishev, A. Boltasseva, V.M. Shalaev, Planar photonics with metasurfaces. Science 339(6125) (2013)

    Google Scholar 

  97. B. Liedberg, C. Nylander, I. Lunström, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)

    Article  Google Scholar 

  98. S. Pillai, K.R. Catchpole, T. Trupke, M.A. Green, Surface plasmon enhanced silicon solar cells. J. Appl. Phys. 101(9), 093105 (2007)

    Google Scholar 

  99. T. Ceccotti, V. Floquet, A. Sgattoni, A. Bigongiari, O. Klimo, M. Raynaud, C. Riconda, A. Heron, F. Baffigi, L. Labate, L.A. Gizzi, L. Vassura, J. Fuchs, M. Passoni, M. Květon, F. Novotny, M. Possolt, J. Prokůpek, J. Proška, J. Pšikal, L. Štolcová, A. Velyhan, M. Bougeard, P. D’Oliveira, O. Tcherbakoff, F. Réau, P. Martin, A. Macchi, Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Phys. Rev. Lett. 111, 185001 (2013)

    Google Scholar 

  100. L. Fedeli, A. Sgattoni, G. Cantono, I. Prencipe, M. Passoni, O. Klimo, J. Proska, A. Macchi, T. Ceccotti, Enhanced electron acceleration via ultra-intense laser interaction with structured targets. Proc. SPIE 9514, 95140R–95140R-8 (2015)

    Google Scholar 

  101. L. Fedeli, A. Sgattoni, G. Cantono, D. Garzella, F. Réau, I. Prencipe, M. Passoni, M. Raynaud, M. Kveton, J. Proska, A. Macchi, T. Ceccotti. Electron acceleration by relativistic surface plasmons in laser-grating interaction. Phys. Rev. Lett. 116, 015001 (2016)

    Google Scholar 

  102. B. Eliasson, Instability of a thin conducting foil accelerated by a finite wavelength intense laser. New J. Phys. 17(3), 033026 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fedeli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fedeli, L. (2017). Introduction on High Intensity Laser-Plasma Interaction and High Field Plasmonics. In: High Field Plasmonics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44290-7_2

Download citation

Publish with us

Policies and ethics