Skip to main content

Introduction

  • Chapter
  • First Online:
High Field Plasmonics

Part of the book series: Springer Theses ((Springer Theses))

  • 575 Accesses

Abstract

Ultra-short laser-matter interaction at extreme intensities is a broad research field with several potential applications, including electron acceleration, ion acceleration, ultra-intense x-ray and \(\gamma \) sources, pulsed neutron sources and laboratory astrophysics (see Chap. 2). Laser-driven sources of charged particles or photons are characterized by some distinctive features with respect to conventional sources. Indeed, due to the shortness of the laser pulse, they can surpass the peak intensity of conventional sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An accelerated particle irradiates electromagnetic energy. The back-reaction force exerted on the particle due to this electromagnetic emission is called Radiation Reaction force.

  2. 2.

    Electron sources with these characteristics are not easily attainable with other techniques. Electron bunches in the few MeVs energy range could be interesting for imaging of ultra-fast processes with electron diffraction (i.e. Ultra-fast Electron Diffraction) [1113] or photo-neutron generation (recently laser-based photoneutron sources were proven to reach very high peak flux intensities [3, 5]).

References

  1. W.P. Leemans, A.J. Gonsalves, H.-S. Mao, K. Nakamura, C. Benedetti, C.B. Schroeder, Cs. Tóth, J. Daniels, D.E. Mittelberger, S. S. Bulanov, J.-L. Vay, C.G.R. Geddes, E. Esarey, Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime. Phys. Rev. Lett. 113, 245002 (2014)

    Google Scholar 

  2. G. Sarri, K. Poder, J.M. Cole, W. Schumaker, A. Di Piazza, B. Reville, T. Dzelzainis, D. Doria, L.A. Gizzi, G. Grittani, S. Kar, C.H. Keitel, K. Krushelnick, S. Kuschel, S.P.D. Mangles, Z. Najmudin, N. Shukla, L.O. Silva, D. Symes, A.G.R. Thomas, M. Vargas, J. Vieira, M. Zepf, Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nat. Commun. 6, 6747 (2015)

    Google Scholar 

  3. Y. Arikawa, M. Utsugi, A. Morace, T. Nagai, Y. Abe, S. Kojima, S. Sakata, H. Inoue, S. Fujioka, Z. Zhang, H. Chen, J. Park, J. Williams, T. Morita, Y. Sakawa, Y. Nakata, J. Kawanaka, T. Jitsuno, N. Sarukura, N. Miyanaga, H. Azechi, High-intensity neutron generation via laser-driven photonuclear reaction. Plasma Fusion Res. 10, 2404003 (2015)

    Google Scholar 

  4. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernandez, D. Gautier, M. Geissel, R. Haight, C.E. Hamilton, B.M. Hegelich, R.P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J.L. Tybo, F. Wagner, S.A. Wender, C.H. Wilde, G.A. Wurden, Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett. 110, 044802 (2013)

    Google Scholar 

  5. I. Pomerantz, E. McCary, A.R. Meadows, A. Arefiev, A.C. Bernstein, C. Chester, J. Cortez, M.E. Donovan, G. Dyer, E.W. Gaul, D. Hamilton, D. Kuk, A.C. Lestrade, C. Wang, T. Ditmire, B.M. Hegelich, Ultrashort pulsed neutron source. Phys. Rev. Lett. 113, 184801 (2014)

    Google Scholar 

  6. M.A. Purvis, V.N. Shlyaptsev, R. Hollinger, C. Bargsten, A. Pukhov, A. Prieto, Y. Wang, B.M. Luther, L. Yin, S. Wang, J.J. Rocca, Relativistic plasma nanophotonics for ultrahigh energy density physics. Nat. Photonics 7, 796–800 (2013)

    Google Scholar 

  7. É. Falize, A. Ravasio, B. Loupias, A. Dizière, C.D. Gregory, C. Michaut, C. Busschaert, C. Cavet, M. Koenig, High-energy density laboratory astrophysics studies of accretion shocks in magnetic cataclysmic variables. High Energy Density Phys. 8(1), 1–4 (2012); cited By 7

    Google Scholar 

  8. L. Fedeli, A. Sgattoni, G. Cantono, I. Prencipe, M. Passoni, O. Klimo, J. Proska, A. Macchi, T. Ceccotti, Enhanced electron acceleration via ultra-intense laser interaction with structured targets. Proc. SPIE 9514, 95140R–95140R-8 (2015)

    Google Scholar 

  9. L. Fedeli, A. Sgattoni, G. Cantono, D. Garzella, F. Réau, I. Prencipe, M. Passoni, M. Raynaud, M. Květoň, J. Proska, A. Macchi, T. Ceccotti, Electron acceleration by relativistic surface plasmons in laser-grating interaction. Phys. Rev. Lett. 116, 015001 (2016)

    Google Scholar 

  10. Surface plasmon resurrection (editorial). Nat. Photonics 6, 707 (2012)

    Google Scholar 

  11. J.B. Hastings, F.M. Rudakov, D.H. Dowell, J.F. Schmerge, J.D. Cardoza, J.M. Castro, S.M. Gierman, H. Loos, P.M. Weber, Ultrafast time-resolved electron diffraction with megavolt electron beams. Appl. Phys. Lett. 89(18), 184109 (2006)

    Google Scholar 

  12. S. Tokita, S. Inoue, S. Masuno, M. Hashida, S. Sakabe, Single-shot ultrafast electron diffraction with a laser-accelerated sub-MeV electron pulse. Appl. Phys. Lett. 95(11), 111911 (2009)

    Google Scholar 

  13. G. Sciaini, R.J.D. Miller, Femtosecond electron diffraction: heralding the era of atomically resolved dynamics. Rep. Prog. Phys. 74(9), 096101 (2011)

    Google Scholar 

  14. M. Passoni, A. Zani, A. Sgattoni, D. Dellasega, A. Macchi, I. Prencipe, V. Floquet, P. Martin, T.V. Liseykina, T. Ceccotti, Energetic ions at moderate laser intensities using foam-based multi-layered targets. Plasma Phys. Control. Fusion 56(4), 045001 (2014)

    Google Scholar 

  15. A. Sgattoni, P. Londrillo, A. Macchi, M. Passoni, Laser ion acceleration using a solid target coupled with a low-density layer. Phys. Rev. E 85, 036405 (2012)

    Google Scholar 

  16. C.A.J. Palmer, J. Schreiber, S.R. Nagel, N.P. Dover, C. Bellei, F.N. Beg, S. Bott, R.J. Clarke, A.E. Dangor, S.M. Hassan, P. Hilz, D. Jung, S. Kneip, S.P.D. Mangles, K.L. Lancaster, A. Rehman, A.P.L. Robinson, C. Spindloe, J. Szerypo, M. Tatarakis, M. Yeung, M. Zepf, Z. Najmudin, Rayleigh–Taylor instability of an ultrathin foil accelerated by the radiation pressure of an intense laser. Phys. Rev. Lett. 108, 225002 (2012)

    Google Scholar 

  17. F. Pegoraro, S.V. Bulanov, Photon bubbles and ion acceleration in a plasma dominated by the radiation pressure of an electromagnetic pulse. Phys. Rev. Lett. 99, 065002 (2007)

    Google Scholar 

  18. A. Sgattoni, S. Sinigardi, L. Fedeli, F. Pegoraro, A. Macchi, Laser-driven Rayleigh–Taylor instability: plasmonic effects and three-dimensional structures. Phys. Rev. E 91, 013106 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Fedeli .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fedeli, L. (2017). Introduction. In: High Field Plasmonics. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44290-7_1

Download citation

Publish with us

Policies and ethics