Skip to main content

Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells

  • Chapter
  • First Online:
Diffractive Optics for Thin-Film Silicon Solar Cells

Part of the book series: Springer Theses ((Springer Theses))

  • 844 Accesses

Abstract

The demand for low-cost, high-efficiency solar cells along with the never-ending promises of modern technology have caused an increase of research into photovoltaics, particularly into the control of light at the subwavelength scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. AP 32(3), 510–519 (1961). doi:10.1063/1.1736034

    Google Scholar 

  2. W. Marx, The shockley-queisser paper - a notable example of a scientific sleeping beauty. Ann. Phys. 526(5–6), A41–A45 (2014). doi:10.1002/andp.201400806

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Shen, Effect of c-si doping density on heterojunction with intrinsic thin layer (hit) radial junction solar cells, in 39th IEEE Photovoltaic Specialists Conference (PVSC), The Pennsylvania State University (2013), pp. 2466–2469. doi:10.1109/PVSC.2013.6744975

  4. M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, X. Zhang, Heterojunction silicon microwire solar cells. Nano Lett. 12(12), 6278–6282 (2012). doi:10.1021/nl3033813

    Article  ADS  Google Scholar 

  5. Haoting Shen. Radial junction solar cells based on heterojunction with intrinsic thin layer (hit) structure. Dissertation, The Pennsylvania State University (2014), p. 167

    Google Scholar 

  6. J. Oh, H.-C. Yuan, H.M. Branz, An 18.2%-efficient black-silicon solar cell achieved through control of carrier recombination in nanostructures. Nature Nanotechnology 7, 743–748 (2012). September. doi:10.1038/nnano.2012.166

  7. X.X. Lin, X. Hua, Z.G. Huang, W.Z. Shen, Realization of high performance silicon nanowire based solar cells with large size. Nanotechnology 24, 235402 (2013). doi:10.1088/0957-4484/24/23/235402

    Article  ADS  Google Scholar 

  8. H.A. Atwater, A. Polman, Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010). doi:10.1038/nmat2629

    Article  ADS  Google Scholar 

  9. J. Park, J. Rao, T. Kim, S. Varlamov, Highest efficiency plasmonic polycrystalline silicon thin-film solar cells by optimization of plasmonic nanoparticle fabrication. Plasmonics 8(2), 1209–1219 (2013). doi:10.1007/s11468-013-9534-x

    Article  Google Scholar 

  10. V.E. Ferry, M.A. Verschuuren, H.B.T. Li, E. Verhagen, R.J. Walters, R.E.I. Schropp, H.A. Atwater, A. Polman, Light trapping in ultrathin plasmonic solar cells. Opt. Express 18(S2), A237–A245 (2010). doi:10.1364/OE.18.00A237

    Article  ADS  Google Scholar 

  11. H. Tan, R. Santbergen, A.H.M. Smets, M. Zeman, Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. Nano Lett. 12, 4070–4076 (2012). doi:10.1021/nl301521z

    Article  ADS  Google Scholar 

  12. H. Tan, L. Sivec, B. Yan, R. Santbergen, M. Zeman, A.H.M. Smets, Improved light trapping in microcrystalline silicon solar cells by plasmonic back reflector with broad angular scattering and low parasitic absorption. Appl. Phys. Lett. 102, 153902 (2013). doi:10.1063/1.4802451

    Article  ADS  Google Scholar 

  13. S. Morawiec, M.J. Mendes, S.A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, I. Crupi, Broadband photocurrent enhancement in a-Si: H solar cells with plasmonic back reflectors. Opt. Express 22(S4), A1059–A1070 (2014). doi:10.1364/OE.22.0A1059

    Article  ADS  Google Scholar 

  14. P. Spinelli, M.A. Verschuuren, A. Polman, Broadband omnidirectional antireflection coating based on subwavelength surface mie resonators. Nat. Commun. 3, 692 (2012). doi:10.1038/ncomms1691

    Article  ADS  Google Scholar 

  15. J. Grandidier, D.M. Callahan, J.N. Munday, H.A. Atwater, Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv. Mater. 23(10), 1272–1276 (2011). doi:10.1002/adma.201004393

    Article  Google Scholar 

  16. E. Garnett, P. Yang, Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010). doi:10.1021/nl100161z

    Article  ADS  Google Scholar 

  17. R. Santbergen, R. Liang, M. Zeman, a-si:h solar cells with embedded silver nanoparticles, in 35th IEEE Photovoltaic Specialists Conference (PVSC) (2010), pp. 748–753. doi:10.1109/PVSC.2010.5617095

  18. J. Müller, B. Rech, J. Springer, M. Vanecek, Tco and light trapping in silicon thin film solar cells. Sol. Energy 77(6), 917–930 (2004). doi:10.1016/j.solener.2004.03.015

    Article  ADS  Google Scholar 

  19. G.F. Zheng, J. Zhao, M. Gross, E. Chen, Very low light-reflection from the surface of incidence of a silicon solar cell. Sol. Energy Mater. Sol. Cells 40(1), 89–95 (1996). doi:10.1016/0927-0248(95)00085-2

    Article  Google Scholar 

  20. E. Jiménez-Rodríguez A. Montesdeoca-Santana, B. Gonzáilez-Díaz, D. Borchert, R. Guerrero-Lemus. Ultra-low concentration na\(_2\)co\(_3\)/nahco\(_3\) solution for texturization of crystalline silicon solar cells. Prog. PV 20(2), 191–196 (2012). doi:10.1002/pip.1117

  21. S. Han, B.K. Paul, C. Chang, Nanostructured \(\mathit{ZnO}\) as biomimetic anti-reflective coatings on textured silicon using a continuous solution process. J. Mater. Chem. 22(43), 22906–22912 (2012). doi:10.1039/C2JM33462C

    Article  Google Scholar 

  22. B. Bläsi, Examples of photonic microstructures (2015). https://www.ise.fraunhofer.de/en/business-areas/solar-thermal-technology/research-topics/material-research-and-optics/fields-of-work/microstructured-surfaces/r-d-services/structure-examples

  23. A. Fresnel, Mémoires sur la diffraction de la lumière. Oeuvres 1, 89–122 (1816)

    Google Scholar 

  24. S. Larouche, D.R. Smith, Reconciliation of generalized refraction with diffraction theory. Opt. Lett. 37(12), 2391–2393 (2012). doi:10.1364/OL.37.002391

    Article  ADS  Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2004)

    MATH  Google Scholar 

  26. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystals - Molding the Flow of Light (Princeton University Press, Princeton, 2007)

    MATH  Google Scholar 

  27. E. Yablonovitch, G.D. Cody, Intensity enhancement in textured optical sheets for solar cells. IEEE Trans. Electron Devices 29(2), 300–305 (1982). doi:10.1109/T-ED.1982.20700

    Article  ADS  Google Scholar 

  28. J.H. Lambert, Photometria, sive de mensura et gradibus luminis, colorum et umbrae (W. Engelmann, Leipzig, 1892)

    Google Scholar 

  29. J. Gee, The effect of parasitic absorption losses on light trapping in thin silicon solar cells. IEEE PVSC Las Vegas 1, 549–554 (1988). doi:10.1109/PVSC.1988.105762

    Google Scholar 

  30. C. Battaglia, M. Boccard, F.-J. Haug, C. Ballif, Light trapping in solar cells: when does a lambertian scatterer scatter lambertianly? Appl. Phys. 112, 094504 (2012). doi:10.1063/1.4761988

    Article  Google Scholar 

  31. A. Bozzola, M. Liscidini, L.C. Andreani, Photonic light-trapping versus lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns. Opt. Express 20(S2), A224–A244 (2012). doi:10.1364/OE.20.00A224

    Article  ADS  Google Scholar 

  32. Z. Yu, A. Raman, S. Fan, Fundamental limit of nanophotonic light trapping in solar cells. PNAS 107(41), 17491–17496 (2010). doi:10.1073/pnas.1008296107

    Article  ADS  Google Scholar 

  33. I.M. Peters, Phase space considerations for light path lengths in planar isotropic absorbers. Opt. Express Phase space considerations for light path lengths in planar, isotropic absorbers. 22(S3), A908–A920 (2014). doi:10.1364/OE.22.00A908

    Google Scholar 

  34. A. Basch, F.J. Beck, T. Söderström, S. Varlamov, K.R. Catchpole, Combined plasmonic and dielectric rear reflectors for enhanced photocurrent in solar cells. APL 100, 243903 (2012). doi:10.1063/1.4729290

    Google Scholar 

  35. F. Pratesi, M. Burresi, F. Riboli, K. Vynck, D.S. Wiersma, Disordered photonic structures for light harvesting in solar cells. Opt. Express 21(S3), A460–A468 (2013). doi:10.1364/OE.21.00A460

    Article  ADS  Google Scholar 

  36. R.S. Ohl, Light-sensitive electric device (1946). http://www.google.com/patents/US2402662 (US Patent 2402662)

  37. I.M. Ross, The invention of the transistor. IEEE 86(1), 7–28 (1998). doi:10.1109/5.658752

    Google Scholar 

  38. D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p–n junction photocell for converting solar radiation into electrical power. AP 25, 676/677 (1954). doi:10.1063/1.1721711

  39. G.K. Teal, Some recent developments in silicon and germanium materials and devices, in National Conference on Airborne Electronics Dayton (Ohio) (1954)

    Google Scholar 

  40. G.K. Teal, J.B. Little, Growth of germanium single crystals. Phys. Rev. 78, 647 (1950). doi:10.1103/PhysRev.78.637

    Google Scholar 

  41. A.W. Blakers, M.A. Green, 20% efficiency silicon solar cells. APL 48(3), 215–217 (1986). doi:10.1063/1.96799

    Google Scholar 

  42. C.R. Baraona, H.W. Brandhorst, V-grooved silicon solar cells, in IEEE 11th Photovoltaic Specialists Conference in Phoenix (Arizona) (1975)

    Google Scholar 

  43. M.S. Bae, R.V. O’Aielio, p+/n high-efficiency silicon solar cells. APL 31, 285 (1977). doi:10.1063/1.89664

    Google Scholar 

  44. P. Sheng, A.N. Bloch, R.S. Stepleman, Wavelength-selective absorption enhancement in thinfilm solar cells. Appl. Phys. Lett. 43(6), 579–581 (1983). doi:10.1063/1.94432

    Article  ADS  Google Scholar 

  45. H.W. Deckman, C.B. Roxlo, E. Yablonovitch, Maximum statistical increase of optical absorption in textured semiconductor films. Opt. Lett. 8(9), 491–493 (1983a). doi:10.1364/OL.8.000491

    Article  ADS  Google Scholar 

  46. H.W. Deckman, C.R. Wronski, H. Witzke, E. Yablonovitch, Optically enhanced amorphous silicon solar cells. APL 42(11), 968–970 (1983b). doi:10.1063/1.93817

    Google Scholar 

  47. P. Campbell, M.A. Green, Light trapping properties of pyramidally textured surfaces. AP 62, 243 (1987). doi:10.1063/1.339189

    Google Scholar 

  48. J. Zhao, A. Wang, M.A. Green, 24% efficient perl structure silicon solar cells. IEEE Photovolt. Spec. Conf. (Kissimmee) 1, 333–335 (1990). doi:10.1109/PVSC.1990.111642

    Article  Google Scholar 

  49. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58(20), 2059–2062 (1987). doi:10.1103/PhysRevLett. 58.2059

    Article  ADS  Google Scholar 

  50. J. Szlufcik, S. Sivoththaman, J.F. Nijs, R.P. Mertens, R. van Overstraeten, Low-cost industrial technologies of crystalline silicon solar cells. IEEE 85(5), 711–730 (1997). doi:10.1109/5.588971

    Article  Google Scholar 

  51. S. Chou, P. Krauss, P. Renstrom, Imprint lithography with 25-nanometer resolution. Science 272(5258), 85–87 (1996). doi:10.1126/science.272.5258.85

    Article  ADS  Google Scholar 

  52. A. Gombert, K. Rose, A. Heinzel, W. Horbelt, C. Zanke, B. Bläsi, W. Wittwer, Antireflective submicrometer surface-relief gratings for solar applications. SEM 54, 333–342 (1998). doi:10.1016/S0927-0248(98)00084-1

    Google Scholar 

  53. K. Yamamoto, M. Yoshimi, T. Suzuki, Y. Tawada, Y. Okamoto, A. Nakajima, Thin film poly-si solar cell on glass substrate fabricated at low temperature. MRS Spring Meeting on Amorphous and Microcrystalline Silicon Technology (San Francisco) 507, 131–138 (1998)

    Google Scholar 

  54. J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 19.8% efficient “honeycomb” textured multicrystalline and 24.4 % monocrystalline silicon solar cells. APL 73(14), 1991–1993 (1998). doi:10.1063/1.122345

  55. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 43). Prog. PV: Res. Appl. 22, 1–9 (2014). doi:10.1002/pip.2452

    Google Scholar 

  56. R. Sinton, Y. Kwark, J. Gan, R. Swanson, 27.5-percent silicon concentrator solar cells. IEEE Electron Device Lett. 7(10), 567–569 (1986). doi:10.1109/EDL.1986.26476

    Article  ADS  Google Scholar 

  57. J. Hylton, Light coupling and light trapping in alkaline etched multicrystalline silicon wafers for solar cells. Ph.D. thesis, University of Utrecht (2006)

    Google Scholar 

  58. R. Einhaus, E. Vazsonyi, J. Szlufcik, J. Nijs, R. Mertens, Isotropic texturing of multicrystalline silicon wafers with acidic texturing solutions, in IEEE Photovoltaic Specialists Conference Anaheim (CA) (1997), pp. 167–170. doi:10.1109/PVSC.1997.654055

  59. M.A. Green, M.J. Keevers, Short communication: optical properties of intrinsic silicon at 300 k. Prog. PV: Res. Appl. 3, 189–192 (1995). doi:10.1002/pip.4670030303

    Google Scholar 

  60. M.G. Moharam, E.B. Grann, D.A. Pommet, Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J. OSA 12(5), 1068–1076 (1995). doi:10.1364/JOSAA.12.001068

    ADS  Google Scholar 

  61. D.M. Whittaker, I.S. Culshaw, Scattering-matrix treatment of patterned multilayer photonic structures. PRB 60, 2610 (1999). doi:10.1103/PhysRevB.60.2610

    Article  ADS  Google Scholar 

  62. A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells. Science 285(5428), 692–698 (1999). doi:10.1126/science.285.5428.692

    Article  Google Scholar 

  63. C. Battaglia, C.-M. Hsu, K. Söderström, J. Escarré, F.-J. Haug, M. Charrière, M. Boccard, M. Despeisse, D.T.L. Alexander, M. Cantoni, Y. Cui, C. Ballif, Light trapping in solar cells: can periodic beat random? ACS Nano 6(3), 2790–2792 (2012b). doi:10.1021/nn300287j

    Article  Google Scholar 

  64. O. Isabella, A. Ingenito, D. Linssen, M. Zeman, Front/rear decoupled texturing in refractive and diffractive regimes for ultra-thin silicon-based solar cells, in Renewable Energy and the Environment, OSA Technical Digest (2013), p. PM4C.2. doi:10.1364/PV.2013.PM4C.2

  65. K.X. Wang, Z. Yu, V. Liu, Y. Cui, S. Fan, Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett. 12(3), 1616–1619 (2012). doi:10.1021/nl204550q

    Article  ADS  Google Scholar 

  66. C.S. Schuster, P. Kowalczewski, E.R. Martins, M. Patrini, M.G. Scullion, M. Liscidini, L. Lewis, C. Reardon, L.C. Andreani, T.F. Krauss, Dual gratings for enhanced light trapping in thin-film solar cells by a layer-transfer technique. Opt. Express 21(S3), A433–A439 (2013). doi:10.1364/OE.21.00A433

    Article  ADS  Google Scholar 

  67. J. Gjessing, Photonic crystals for light trapping in solar cells. Ph.D. thesis, University of Oslo (2011)

    Google Scholar 

  68. D. Macdonald, A. Cuevas, M. Kerr, C. Samundsett, D. Ruby, S. Winderbaum, A. Leo, Texturing industrial multicrystalline silicon solar cells. Sol. Energy 76, 277–283 (2004). doi:10.1016/j.solener.2003.08.019

    Article  ADS  Google Scholar 

  69. O. Isabella, K. Jäger, J. Krc, M. Zeman, Light scattering properties of surface-textured substrates for thin-film solar cells. Proc. 23rd EUPVSEC 1, 476–481 (2008)

    Google Scholar 

  70. A. Čampa, J. Krč, F. Smole, M. Topič, Potential of diffraction gratings for implementation as a metal back reflector in thin-film silicon solar cells. TSF 516(20), 6963–6967 (2008). doi:10.1016/j.tsf.2007.12.051

    Article  ADS  Google Scholar 

  71. H. Sai, H. Fujiwara, M. Kondo, Back surface reflectors with periodic textures fabricated by self-ordering process for light trapping in thin-film microcrystalline silicon solar cells. SEM 93, 1087–1090 (2009). doi:10.1016/j.solmat.2008.12.030

    Google Scholar 

  72. A. Ingenito, O. Isabella, M. Zeman, Experimental demonstration of \(4n2\) classical absorption limit in nanotextured ultrathin solar cells with dielectric omnidirectional back reflector. ACS Photonics 1(3), 270–278 (2014). doi:10.1021/ph4001586

    Article  Google Scholar 

  73. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L.C. Kimerling, B.A. Alamariu, Efficiency enhancement in si solar cells by textured photonic crystal back reflector. APL 89, 11 (2006). doi:10.1063/1.2349845

    Google Scholar 

  74. P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, J.D. Joannopoulos, Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals. OE 15(25), 16986–17000 (2007). doi:10.1364/OE.15.016986

    Article  Google Scholar 

  75. A. Poruba, A. Fejfar, Z. Remes, J. Springer, M. Vanecek, J. Kocka, J. Meier, P. Torres, A. Shah, Optical absorption and light scattering in microcrystalline silicon thin films and solar cells. AP 88(1), 148–160 (2000). doi:10.1063/1.373635

    Google Scholar 

  76. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks, Y. Goldstein, Disorder and the optical-absorption edge of hydrogenated amorphous silicon. Phys. Rev. Lett. 47(20), 1480 (1981). doi:10.1103/PhysRevLett. 47.1480

    Article  ADS  Google Scholar 

  77. N. Bakr, A. Funde, V. Waman, M. Kamble, R. Hawaldar, D. Amalnerkar, S. Gosav, S. Jadkar, Determination of the optical parameters of a-si:h thin films deposited by hot wire-chemical vapour deposition technique using transmission spectrum only. Pramana 76(3), 519–531 (2011). doi:10.1007/s12043-011-0024-4

    Article  ADS  Google Scholar 

  78. Am1.5g solar spectrum irradiance data, 2015. http://rredc.nrel.gov/solar/spectra/am1.5

  79. E.D. Palik, Handbook of Optical Constants of Solids (Academic, Orlando, 1985)

    Google Scholar 

  80. J. Gjessing, A.S. Sudbø, E.S. Marstein, Comparison of periodic light-trapping structures in thin crystalline silicon solar cells. J. Appl. Phys. 110(3), 033104 (2011). doi:10.1063/1.3611425

    Article  ADS  Google Scholar 

  81. E.R. Martins, J. Li, Y. Liu, V. Depauw, Z. Chen, J. Zhou, T.F. Krauss, Deterministic quasi-random nanostructures for photon control. Nat. Commun. 4, 2665 (2013). doi:10.1038/ncomms3665

    Article  ADS  Google Scholar 

  82. S.E. Han, G. Chen, Toward the lambertian limit of light trapping in thin nanostructured silicon solar cells. Nano Lett. 10(11), 4692–4696 (2010). doi:10.1021/nl1029804

    Article  ADS  Google Scholar 

  83. S.B. Mallick, M. Agrawal, P. Peumans, Optimal light trapping in ultra-thin photonic crystal crystalline silicon solar cells. Opt. Express 18(6), 5691–5706 (2010). doi:10.1364/OE.18.005691

    Article  ADS  Google Scholar 

  84. A. Mellor, I. Tobias, A. Marti, A. Luque, A numerical study of bi-periodic binary diffraction gratings for solar cell applications. Sol. Energy Mater. Sol. Cells 95(12), 3527–3535 (2011). doi:10.1016/j.solmat.2011.08.017

    Article  Google Scholar 

  85. A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, B. Bläsi, Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation. Opt. Express 21(S2), A295–A304 (2013). doi:10.1364/OE.21.00A295

    Article  ADS  Google Scholar 

  86. R. Dewan, D. Knipp, Light trapping in thin-film silicon solar cells with integrated diffraction grating. J. Appl. Phys. 106(7), 074901 (2009). doi:10.1063/1.3232236

    Article  ADS  Google Scholar 

  87. Y. Yao, J. Yao, V. Kris Narasimhan, Z. Ruan, C. Xie, S. Fan, Y. Cui, Broadband light management using low-q whispering gallery modes in spherical nanoshells. Nat. Commun. 3, 664 (2012). doi:10.1038/ncomms1664

  88. N.T. Fofang, T.S. Luk, M. Okandan, G.N. Nielson, I. Brener, Substrate-modified scattering properties of silicon nanostructures for solar energy applications. Opt. Express 21(4), 4774–4782 (2013). doi:10.1364/OE.21.004774

    Article  ADS  Google Scholar 

  89. D. Lockau, T. Sontheimer, C. Becker, E. Rudigier-Voigt, F. Schmidt, B. Rech, Nanophotonic light trapping in 3-dimensional thin-film silicon architectures. Opt. Express 21(S1), A42–A52 (2013). doi:10.1364/OE.21.000A42

    Article  ADS  Google Scholar 

  90. X. Sheng, L.Z. Broderick, L.C. Kimerling, Photonic crystal structures for light trapping in thin-film si solar cells: modeling, process and optimizations. Opt. Commun. 314, 41–47 (2014). doi:10.1016/j.optcom.2013.07.085

    Article  ADS  Google Scholar 

  91. C. Trompoukis, O. El Daif, V. Depauw, I. Gordon, J. Poortmans, Photonic assisted light trapping integrated in ultrathin crystalline silicon solar cells by nanoimprint lithography. Appl. Phys. Lett. 101(10), 103901 (2012). doi:10.1063/1.4749810

    Article  ADS  Google Scholar 

  92. V. Depauw, X. Meng, O. El Daif, G. Gomard, L. Lalouat, E. Drouard, C. Trompoukis, A. Fave, C. Seassal, I. Gordon, Micrometer-thin crystalline-silicon solar cells integrating numerically optimized 2-d photonic crystals. IEEE J. Photovolt. 4(1), 215–223 (2013). doi:10.1109/JPHOTOV.2013.2286521

    Article  Google Scholar 

  93. J. Zhao, A. Wang, P.P. Altermatt, S.R. Wenham, M.A. Green, 24% efficient perl silicon solar cell: recent improvements in high efficiency silicon cell research. Sol. Energy Mater. Sol. Cells 41(42), 87–99 (1996). doi:10.1016/0927-0248(95)00117-4

    Article  Google Scholar 

  94. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S.W. Glunz, A passivated rear contact for high-efficiency n-type si solar cells enabling high voc’s and \(ff>82\)%, in 28th EU PVSEC (2013), p. 2CO.4.4. doi:10.4229/28thEUPVSEC2013-2CO.4.4

  95. L. Wang, J. Han, A. Lochtefeld, A. Gerger, M. Carroll, D. Stryker, S. Bengtson, M. Curtin, H. Li, Y. Yao, D. Lin, J. Ji, A.J. Lennon, R.L. Opila, A. Barnett, 16.8% efficient ultra-thin silicon solar cells on steel, in 28th EU PVSEC (2013), p. 3DV.1.12. doi:10.4229/28thEUPVSEC2013-3DV.1.12

  96. J.H. Petermann, D. Zielke, J. Schmidt, F. Haase, E.G. Rojas, R. Brendel, 19% efficient and 43 \(\upmu \)m thick crystalline si solar cell from layer transfer using porous silicon. Prog. Photovolt. Res. Appl. 20(1), 1–5 (2012). doi:10.1002/pip.1129

    Article  Google Scholar 

  97. H. Sai, K. Saito, N. Hozuki, M. Kondo, Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells. Appl. Phys. Lett. 102, 053509 (2013). doi:10.1063/1.4790642

    Article  ADS  Google Scholar 

  98. C. Haase, H. Stiebig, Optical properties of thin-film silicon solar cells with grating couplers. Prog. Photovolt. Res. Appl. 14(7), 629–641 (2006). doi:10.1002/pip.694

    Article  Google Scholar 

  99. C. Heine, R. Morf, Submicrometer gratings for solar energy applications. Appl. Opt. 34(14), 2476–2482 (1995). doi:10.1364/AO.34.002476

    Article  ADS  Google Scholar 

  100. A. Lin, J. Phillips, Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms. SEM 92, 1689–1696 (2008). doi:10.1016/j.solmat.2008.07.021

    Google Scholar 

  101. M. Peters, C. Battaglia, K. Forberich, B. Bläsi, N. Sahraei, A.G. Aberle, Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline silicon solar cells. Opt. Express 20(28), 29488–29499 (2012). doi:10.1364/OE.20.029488

    Article  ADS  Google Scholar 

  102. E.R. Martins, J. Li, Y.K. Liu, J. Zhou, T.F. Krauss, Engineering gratings for light trapping in photovoltaics: The supercell concept. Phys. Rev. B 86, 041404(R) (2012). doi:10.1103/PhysRevB.86.041404

    Article  ADS  Google Scholar 

  103. V.E. Ferry, M.A. Verschuuren, M. Claire van Lare, R.E.I. Schropp, H.A. Atwater, A. Polman, Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-si:h solar cells. Nano Lett. 11, 4239–4245 (2011). doi:10.1021/nl202226r

    Article  ADS  Google Scholar 

  104. R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, D. Knipp, Light trapping in thin-film silicon solar cells with submicron surface texture. Opt. Express 17(25), 23058–23065 (2009). doi:10.1364/OE.17.023058

    Article  ADS  Google Scholar 

  105. D. Madzharov, R. Dewan, D. Knipp, Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells. Opt. Express 19(S2), A95–A107 (2011). doi:10.1364/OE.19.000A95

    Article  ADS  Google Scholar 

  106. M.A. Tsai, H.W. Han, Y.L. Tsai, P.C. Tseng, P. Yu, H.C. Kuo, C.H. Shen, J.M. Shieh, S.H. Lin, Embedded biomimetic nanostructures for enhanced optical absorption in thin-film solar cells. Opt. Express 19(S4), A757–A762 (2011). doi:10.1364/OE.19.00A757

    Article  ADS  Google Scholar 

  107. A. Abass, K.Q. Le, A. Alù, M. Burgelman, B. Maes, Dual-interface gratings for broadband absorption enhancement in thin-film solar cells. Phys. Rev. B 85(11), 115449 (2012). doi:10.1103/PhysRevB.85.115449

    Article  ADS  Google Scholar 

  108. X. Meng, E. Drouard, G. Gomard, R. Peretti, A. Fave, C. Seassal, Combined front and back diffraction gratings for broad band light trapping in thin film solar cell. Opt. Express 20(S5), A560–A571 (2012). doi:10.1364/OE.20.00A560

    Article  ADS  Google Scholar 

  109. H.B.T. Li, R.H.-J. Franken, R.L. Stolk, J.K. Rath, R.E.I. Schropp, Mechanism of shunting of nanocrystalline silicon solar cells deposited on rough Ag/ZnO substrates. Solid State Phenom. 131–133, 27–32 (2007). doi:10.4028/www.scientific.net/SSP.131-133.27

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Stefano Schuster .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schuster, C.S. (2017). Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells. In: Diffractive Optics for Thin-Film Silicon Solar Cells. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44278-5_2

Download citation

Publish with us

Policies and ethics