Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 541 Accesses

Abstract

The chapter introduces all-optical wavelength conversion (AOWC) as a key functionality of future optical networks and the potential of using nonlinear effects in semiconductor optical amplifiers (SOAs) for such applications. Nonlinear four-wave mixing (FWM) based AOWC in quantum-dot (QD) SOAs, the definition of basic parameters and various FWM schemas are introduced. Optimization of the static FWM properties are discussed. The AOWC of differential (quadrature) phase-shift keying (D(Q)PSK) signals with a symbol rate of 40 GBd is demonstrated within a wavelength range of at least 35 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Parts of this chapter have been previously published in [1–8]. 1: Bimberg 2010; 2: Meuer 2011a; 3: Meuer 2011b; 4: Meuer 2011d; 5: Bimberg 2011; 6: Schmeckebier 2011; 7: Schmeckebier 2012; 8: Zeghuzi 2015b.

  2. 2.

    FWM in general is based on the interaction of three field generating a fourth frequency component. In case of a full degenerated FWM, all three frequency components are identical and thus the fourth frequency is. For a partly degenerated FWM used here for AOWC, two frequencies (usually the pump signal) are identical.

  3. 3.

    The homogenous linewidth (FWHM) of the QDs at room temperature is around 10 meV corresponding to 14.0 nm at a wavelength of 1.32 µm [100, 101].

  4. 4.

    Please note, that the difference for the wavelength detuning is the opposite of the frequency detuning. Hence, a positive (negative) wavelength detuning refers similar to the positive (negative) frequency detuning to a frequency up-conversion (down-conversion) representing a wavelength down-conversion (up-conversion).

  5. 5.

    The output signal can experience positive or negative fiber-to-fiber gain strongly depending on the saturation degree of the gain media and the fiber-coupling losses. Using the probe output power instead of the input power could lead to an increase of the conversion efficiency by a large negative probe fiber-to-fiber gain (usually via increase of the pump and probe input power), whereas the idler output power remains constant or decreases more gently than the probe output power. This is often observed for FWM in DFB laser or Fabry-Pérot laser.

  6. 6.

    According to [39, 102], the SBR does not equal the OSNR in general but for ASE dominated noise OSNR and SBR have a fixed relation.

  7. 7.

    This is for example the case if the single-pump configuration is set to down-conversion whereas the dual-pump configuration is set to up conversion like shown in Fig. 8.4. In this example, probe and pump 2 are on the same spectral side relative to pump 1.

  8. 8.

    Please note, that the conversion distance from probe to idler 1 is two times the detuning because the last is defined as the difference of probe to pump wavelength.

  9. 9.

    See Appendix B for more details.

  10. 10.

    See the description of the basic setup given in Sect. 6.2.1 for details about the software EQ.

  11. 11.

    The bypassing is required because the FBGs would not reflect the signal. Hence, the probe signal would not reach the receiver.

  12. 12.

    The PDFA used within the receiver exhibit a gain reduction of 8 dB if increasing the wavelength from 1310 to 1320 nm (see Fig. 3.15). The shape of the ASE predicts an even larger gain reduction for changing the wavelength from 1320 nm towards 1340 nm.

  13. 13.

    See Sect. 4.3 for details.

References

  1. R. Bonk, Linear and nonlinear semiconductor optical amplifiers for next-generation optical networks. Doctoral thesis. Karlsruher Institut für Technologie (2013), p. 278

    Google Scholar 

  2. C. Meuer, GaAs-based quantum-dot semiconductor optical amplifiers at 1.3 \(\upmu \)m for all-optical networks. Doctoral thesis. Technical University of Berlin (2011), p. 155

    Google Scholar 

  3. K. Uchiyama, S. Kawanishi, M. Saruwatari, 100-Gb/s multiple-channel output alloptical OTDM demultiplexing using multichannel four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 10(6), 890–892 (1998)

    Article  ADS  Google Scholar 

  4. I. Shake et al., 160 Gbit/s full optical time-division demultiplexing using FWM of SOA-array integrated on PLC. Electron. Lett. 38(1), 37–38 (2002)

    Article  Google Scholar 

  5. S.L. Jansen et al., Demultiplexing 160 Gbit/s OTDM signal to 40 Gbit/s by FWM in SOA. Electron. Lett. 38(17), 978–980 (2002)

    Article  Google Scholar 

  6. A. Sharaiha et al., All-optical logic NOR gate using a semiconductor laser amplifier. Electron. Lett. 33(4), 323–325 (1997)

    Article  Google Scholar 

  7. H. Sun et al., XOR performance of a quantum dot semiconductor optical amplifier based Mach–Zehnder interferometer. Engl. Opt. Express 13(6), 1892–1899 (2005)

    Article  ADS  Google Scholar 

  8. S.J.B. Yoo, Wavelength conversion technologies for WDM network applications. J. Lightw. Technol. 14(6), 955–966 (1996)

    Article  ADS  Google Scholar 

  9. Y. Ueno et al., 3.8-THz wavelength conversion of picosecond pulses using a semiconductor delayed-interference signal-wavelength converter (DISC). IEEE Photonics Technol. Lett. 10(3), 346–348 (1998)

    Article  ADS  Google Scholar 

  10. T. Tripathi, K.N. Sivarajan, Computing approximate blocking probabilities in wavelength routed all-optical networks with limited-range wavelength conversion, in Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM) (1999), pp. 329–336

    Google Scholar 

  11. H. Zang, J.P. Jue, B. Mukherjee, A review of routing and wavelength assignment approaches for wavelength-routed optical WDM networks. Opt. Netw. Mag. 1, 47–60 (2000)

    Google Scholar 

  12. S. Sygletos, I. Tomkos, J. Leuthold, Technological challenges on the road toward transparent networking. J. Opt. Netw. 7(4), 321–350 (2008)

    Article  Google Scholar 

  13. C. Schubert, R. Ludwig, H.-G. Weber, High-speed optical signal processing using semiconductor optical amplifiers, in Ultrahigh-Speed Optical Transmission Technology, 1st edn., ed. by H.-G. Weber, M. Nakazawa (Springer, Berlin, 2007), p. 482

    Google Scholar 

  14. M. Usami, K. Nishimura, Optical Nonlinearities in Semiconductor Optical Amplifiers and Electro-absorption Modulator: Their Applications to All-Optical Regeneration, 1st edn., ed. by H.-G. Weber, M. Nakazawa (Springer, Berlin, 2007), p. 482

    Google Scholar 

  15. T. Yamamoto, M. Nakazawa, Ultrafast OTDM Transmission Using Fiber Devices for Pulse Compression, Shaping, and Demultiplexing, 1st edn., ed. by H.-G. Weber, M. Nakazawa (Springer, Berlin, 2007), p. 482

    Google Scholar 

  16. T. Sakurai, N. Kobayashi, New optical device technologies for ultrafast OTDM systems, in Ultrahigh-Speed Optical Transmission Technology, 1st edn., ed. by H.-G. Weber, M. Nakazawa (Springer, Berlin, 2007), p. 482

    Google Scholar 

  17. H. Ishikawa (ed.), Ultrafast All-Optical Signal Processing Devices, 1st edn. (Wiley, London, 2008), p. 258

    Google Scholar 

  18. S. Watanabe et al., Simultaneous wavelength conversion and optical phase conjugation of 200 Gb/s (5 times; 40 Gb/s) WDM signal using a highly nonlinear fiber four-wave mixer, in International Conference on Integrated Optics and Optical Fibre Communications and European Conference on Optical Communications (ECOC). 1997, TH3A

    Google Scholar 

  19. T. Yamamoto, M. Nakazawa, Highly efficient four-wave mixing in an optical fiber with intensity dependent phase matching. IEEE Photonics Technol. Lett. 9(3), 327–329 (1997)

    Article  ADS  Google Scholar 

  20. B. Olsson et al., A simple and robust 40-Gb/s wavelength converter using fiber crossphase modulation and optical filtering. IEEE Photonics Technol. Lett. 12(7), 846–848 (2000)

    Article  ADS  Google Scholar 

  21. W. Wang et al., Raman-enhanced regenerative ultrafast all-optical fiber XPM wavelength converter. J. Lightw. Technol. 23(3), 1105–1115 (2005)

    Article  ADS  Google Scholar 

  22. H. Hu et al., 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion. Opt. Express 18(10), 9961–9966 (2010)

    Article  ADS  Google Scholar 

  23. A.E. Willner et al., Optically efficient nonlinear signal processing. IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011)

    Article  Google Scholar 

  24. M.H. Chou et al., 1.5 \(\upmu \)m-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures. Opt. Lett. 23(13), 1004–1006 (1998)

    Article  ADS  Google Scholar 

  25. J. Yamawaku et al., Simultaneous 25 GHz-spaced DWDM wavelength conversion of 1.03 Tbit/s (103 x 10 Gbit/s) signals in PPLN waveguide. Electron. Lett. 39(15), 1144–1145 (2003)

    Article  Google Scholar 

  26. H. Furukawa et al., Tunable all-optical wavelength conversion of 160-Gb/s RZ optical signals by cascaded SFG-DFG generation in PPLN waveguide. IEEE Photonics Technol. Lett. 19(6), 384–386 (2007)

    Article  ADS  Google Scholar 

  27. R.L. Espinola et al., C-band wavelength conversion in silicon photonic wire waveguides. Opt. Express 13(11), 4341–4349 (2005)

    Article  ADS  Google Scholar 

  28. Q. Lin et al., Ultrabroadband parametric generation and wavelength conversion in silicon waveguides. Opt. Express 14(11), 4786–4799 (2006)

    Article  ADS  Google Scholar 

  29. H. Rong et al., High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides. Opt. Express 14(3), 1182–1188 (2006)

    Article  ADS  Google Scholar 

  30. J. Leuthold, C. Koos, W. Freude, Nonlinear silicon photonics. Nat. Photonics 4(8), 535–544 (2010)

    Article  ADS  Google Scholar 

  31. M. Fisher, S.L. Chuang, Wavelength conversion using an integrated DFB laser-phase shifter. IEEE Photonics Technol. Lett. 16(1), 197–199 (2004)

    Article  ADS  Google Scholar 

  32. X.-H. Jia, Z.-M. Wu, G.-Q. Xia, Terahertz wavelength conversion based on four-wave mixing in \(\lambda /4\)-shifted dfb lasers: dynamic range and performance analysis. IEEE J. Quantum Electron. 43(4), 334–342 (2007)

    Article  ADS  Google Scholar 

  33. H. Kuwatsuka, Wavelength conversion devices, in Ultrafast All-Optical Signal Processing Devices, 1st edn., ed. by H. Ishikawa (Wiley, London, 2008), p. 258

    Google Scholar 

  34. J. Shi, S. Alam, M. Ibsen, Ultra-broadband wavelength conversion based on fourwave mixing in a Raman DFB fiber laser, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC). 2013, JW2A.23

    Google Scholar 

  35. T. Durhuus et al., All-optical wavelength conversion by semiconductor optical amplifiers. J. Lightw. Technol. 14(6), 942–954 (1996)

    Article  ADS  Google Scholar 

  36. D. Nesset, T. Kelly, D. Marcenac, All-optical wavelength conversion using SOA nonlinearities. IEEE Commun. Mag. 36(12), 56–61 (1998)

    Article  Google Scholar 

  37. D. Cotter et al., Nonlinear optics for high-speed digital information processing. Science 286(5444), 1523–1528 (1999)

    Article  Google Scholar 

  38. J. Leuthold et al., 100 Gbit/s all-optical wavelength conversion with integrated SOA delayed-interference configuration. Electron. Lett. 36(13), 1129–1130 (2000)

    Article  Google Scholar 

  39. S. Diez, Why and how to study four-wave mixing? in Photonic Devices for Telecommunications, 1st edn., ed. by G. Guekos (Springer, Berlin, 1999), p. 404

    Google Scholar 

  40. J.P.R. Lacey, G.J. Pendock, R.S. Tucker, All-optical 1300-nm to 1550-nm wavelength conversion using cross-phase modulation in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 8(7), 885–887 (1996)

    Article  ADS  Google Scholar 

  41. G.P. Agrawal, Population pulsations and nondegenerate four-wave mixing in semiconductor lasers and amplifiers. J. Opt. Soc. Am. B 5(1), 147 (1988)

    Article  ADS  Google Scholar 

  42. J. Leuthold et al., 160 Gbit/s SOA all-optical wavelength converter and assessment of its regenerative properties. Electron. Lett. 40(9), 554–555 (2004)

    Article  Google Scholar 

  43. Y. Liu et al., 160 Gbit/s all-optical SOA-based wavelength conversion and error-free transmission through two 50 km fibre links. Electron. Lett. 43(25), 1447–1449 (2007)

    Article  Google Scholar 

  44. Y. Liu et al., Error-free 320 Gb/s SOA-based wavelength conversion using optical filtering, in Optical Fiber Communication Conference (OFC). 2006, PDP28

    Google Scholar 

  45. G. Contestabile et al., 160 Gb/s cross gain modulation in quantum dot SOA at 1550 nm, in Communication (ECOC), European Conference and Exhibition on Optical (2009), pp. 1–2

    Google Scholar 

  46. G. Contestabile et al., Cross-gain modulation in quantum-dot SOA at 1550 nm. IEEE J. Quantum Electron. 46(12), 1696–1703 (2010)

    Article  ADS  Google Scholar 

  47. D. Bimberg et al., Quantum-dot semiconductor optical amplifier for filter-assisted 80- Gb/s wavelength conversion, in International Conference on Transparent Optical Networks (ICTON). 2011, We.B5.4

    Google Scholar 

  48. C. Meuer et al., 80 Gb/s wavelength conversion using a quantum-dot semiconductor optical amplifier and optical filtering. Opt. Express 19(6), 5134–5142 (2011)

    Article  ADS  Google Scholar 

  49. G. Contestabile, A. Maruta, K.-I. Kitayama, Four wave mixing in quantum dot semiconductor optical amplifiers. IEEE J. Quantum Electron. 50(5), 379–389 (2014)

    Article  ADS  Google Scholar 

  50. R.M. Jopson, R.E. Tench, Polarisation-independent phase conjugation of lightwave signals. Electron. Lett. 29(25), 2216–2217 (1993)

    Article  Google Scholar 

  51. G. Hunziker et al., Polarization-independent wavelength conversion at 2.5 Gb/s by dualpum four-wave mixing in a strained semiconductor optical amplifier. IEEE Photonics Technol. Lett. 8(12), 1633–1635 (1996)

    Article  ADS  Google Scholar 

  52. J.P.R. Lacey, S.J. Madden, M.A. Summerfield, Four-channel polarization insensitive optically transparent wavelength converter. IEEE Photonics Technol. Lett. 9(10), 1355–1357 (1997)

    Article  ADS  Google Scholar 

  53. A. Mecozzi et al., Polarization-insensitive four-wave mixing in a semiconductor optical amplifier. Appl. Phys. Lett. 72(21), 2651 (1998)

    Article  ADS  Google Scholar 

  54. U. Feiste et al., 40 Gbit/s transmission over 434 km standard fibre using polarisation independent mid-span spectral inversion. Electron. Lett. 34(21), 2044–2045 (1998)

    Article  Google Scholar 

  55. R. Schnabel et al., Polarization insensitive frequency conversion of a 10-channel OFDM signal using four-wave mixing in a semiconductor laser amplifier. IEEE Photonics Technol. Lett. 6(1), 56–58 (1994)

    Article  ADS  Google Scholar 

  56. L.Y. Lin et al., Polarization-insensitive wavelength conversion up to 10 Gb/s based on four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 10(7), 955–957 (1998)

    Article  ADS  Google Scholar 

  57. M.A.A. Summerfield, R.S. Tucker, Optimization of pump and signal powers for wavelength converters based on FWM in semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 8(10), 1316–1318 (1996)

    Article  ADS  Google Scholar 

  58. F. Girardin, T. Ducellier, S. Diez. Measurement techniques and results, in Photonic Devices for Telecommunications, 1st edn., ed. by G. Guekos (Springer, Berlin, 1999), p. 404

    Google Scholar 

  59. T. Akiyama et al., Symmetric highly efficient (0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers. IEEE Photonics Technol. Lett. 14(8), 1139–1141 (2002)

    Article  ADS  Google Scholar 

  60. D. Nielsen et al., High-speed wavelength conversion in quantum dot and quantum well semiconductor optical amplifiers. Appl. Phys. Lett. 92(21), 211101 (2008)

    Article  ADS  Google Scholar 

  61. A.E. Kelly, D.D. Marcenac, D. Nesset, 40 Gbit/s wavelength conversion over 24.6 nm using FWM in a semiconductor optical amplifier with an optimised MQW active region. Electron. Lett. 33(25), 2123–2124 (1997)

    Article  Google Scholar 

  62. A.E. Kelly et al., 100 Gbit/s wavelength conversion using FWM in an MQW semiconductor optical amplifier. Electron. Lett. 34(20), 1955–1956 (1998)

    Article  Google Scholar 

  63. S. Arahira, Y. Ogawa, 160-Gb/s all-optical encoding experiments by four-wave mixing in a gain-clamped SOA with assist-light injection. IEEE Photonics Technol. Lett. 16(2), 653–655 (2004)

    Article  ADS  Google Scholar 

  64. A. Capua et al., Cross talk free multi channel processing of 10 Gbit/s data via four-wave mixing in a 1550 nm InAs/InP quantum dash amplifier. Opt. Express 16(23), 19072–19077 (2008)

    Article  ADS  Google Scholar 

  65. G. Contestabile et al., Investigation of transparency of FWM in SOA to advanced modulation formats involving intensity, phase, and polarization multiplexing. J. Lightw. Technol. 27(19), 4256–4261 (2009)

    Article  ADS  Google Scholar 

  66. M. Matsuura et al., 320 Gbit/s wavelength conversion using four-wave mixing in quantumdot semiconductor optical amplifiers. Opt. Lett. 36(15), 2910–2912 (2011)

    Article  ADS  Google Scholar 

  67. H. Schmeckebier et al., Wide-range wavelength conversion of 40-Gb/s NRZ-DPSK signals using a 1.3 \(\upmu \)m quantum-dot semiconductor optical amplifier. IEEE Photonics Technol. Lett. 24(13), 1163–1165 (2012)

    Article  ADS  Google Scholar 

  68. G. Contestabile et al., Coherent wavelength conversion in a quantum dot SOA. IEEE Photonics Technol. Lett. 25(9), 791–794 (2013)

    Article  ADS  Google Scholar 

  69. L. Krzczanowicz, M.J. Connelly, 40 Gb/s NRZ-DQPSK data all-optical wavelength conversion using four-wave mixing in a bulk SOA. IEEE Photonics Technol. Lett. 25(24), 2439–2441 (2013)

    Article  ADS  Google Scholar 

  70. S. Diez et al., 160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 11(11), 1402–1404 (1999)

    Article  ADS  Google Scholar 

  71. M. Matsuura et al., Multichannel wavelength conversion of 50-Gbit/s NRZ-DQPSK signals using a quantum-dot semiconductor optical amplifier. Opt. Express 19(26), B560–B566 (2011)

    Article  Google Scholar 

  72. C. Schubert, R. Ludwig, H.G. Weber, High-speed optical signal processing using semiconductor optical amplifiers. J. Opt. Fiber Commun. Rep. 2(2), 171–208 (2005)

    Article  Google Scholar 

  73. H. Schmeckebier et al., Quantum dot semiconductor optical amplifiers at 1.3 \(\upmu \)m for applications in all-optical communication networks. Semicond. Sci. Technol. 26(1), 14009 (2011)

    Article  ADS  Google Scholar 

  74. C. Meuer et al., 40 Gb/s wavelength conversion via four-wave mixing in a quantum-dot semiconductor optical amplifier. Opt. Express 19(4), 3788–3798 (2011)

    Article  ADS  Google Scholar 

  75. R.W. Boyd, Nonlinear Optics, 1st edn. (Elsevier, Amsterdam, 2013), p. 456

    Google Scholar 

  76. J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena, 2nd edn. (Academic Press, London, 2006), p. 680

    Google Scholar 

  77. K. Kikuchi et al., Observation of highly nondegenerate four-wave mixing in 1.5 \(\upmu \)m traveling-wave semiconductor optical amplifiers and estimation of nonlinear gain coefficient. IEEE J. Quantum Electron. 28(1), 151–156 (1992)

    Article  ADS  Google Scholar 

  78. S. Diez, Vierwellenmischung in InGaAs-Halbleiterlaserverstärkern. Diploma thesis, Technische Universität Berlin (1996)

    Google Scholar 

  79. I. Koltchanov et al., Gain dispersion and saturation effects in four-wave mixing in semiconductor laser amplifiers. IEEE J. Quantum Electron. 32(4), 712–720 (1996)

    Article  ADS  Google Scholar 

  80. H. Kuwatsuka, T. Simoyama, H. Ishikawa, Enhancement of third-order nonlinear optical susceptibilities in compressively strained quantum wells under the population inversion condition. IEEE J. Quantum Electron. 35(12), 1817–1825 (1999)

    Article  ADS  Google Scholar 

  81. K. Obermann, A. Mecozzi, J. Mørk, Theory of four-wave mixing, in Photonic Devices for Telecommunications, 1st edn., ed. by G. Guekos (Springer, Berlin, 1999), p. 404

    Google Scholar 

  82. A.V. Uskov, J. Mørk, J. Mark, Wave mixing in semiconductor laser amplifiers due to carrier heating and spectral-hole burning. IEEE J. Quantum Electron. 30(8), 1769–1781 (1994)

    Article  ADS  Google Scholar 

  83. A. Mecozzi et al., High saturation behavior of the four-wave mixing signal in semiconductor amplifiers. Appl. Phys. Lett. 66(1995), 1184–1186 (1995)

    Article  ADS  Google Scholar 

  84. C. Meuer et al., Cross-gain modulation and four-wave mixing for wavelength conversion in undoped and p-doped 1.3 \(\upmu \)m quantum dot semiconductor optical amplifiers. IEEE Photon. J. 2(2), 141–151 (2010)

    Article  Google Scholar 

  85. A. Zeghuzi, Characterisation of quantum dot based semiconductor optical amplifiers for optical communication applications. Master thesis, Technische Universität Berlin (2015), p. 77

    Google Scholar 

  86. G.P. Agrawal, Four-wave mixing and phase conjugation in semiconductor laser media. Opt. Lett. 12(4), 260–262 (1987)

    Article  ADS  Google Scholar 

  87. A. Mecozzi et al., Four-wave mixing in traveling-wave semiconductor amplifiers. IEEE J. Quantum Electron. 31(4), 689–699 (1995)

    Article  ADS  Google Scholar 

  88. J. Zhou et al., Terahertz four-wave mixing spectroscopy in a semiconductor optical amplifier for study of ultrafast dynamics. Appl. Phys. Lett. 63(9), 1179–1181 (1993)

    Article  ADS  Google Scholar 

  89. J. Zhou et al., Efficiency of broadband four-wave mixing wavelength conversion using semiconductor traveling-wave amplifiers. IEEE Photonics Technol. Lett. 6(1), 50–52 (1994)

    Article  ADS  Google Scholar 

  90. S. Diez et al., Related topics, in Photonic Devices for Telecommunications, 1st edn., ed. by G. Guekos (Springer, Berlin, 1999), p. 404

    Google Scholar 

  91. A. Bilenca et al., Broad-band wavelength conversion based on cross-gain modulation and four-wave mixing in InAs-InP quantum-dash semiconductor optical amplifiers operating at 1550 nm. IEEE Photonics Technol. Lett. 15(4), 563–565 (2003)

    Article  ADS  Google Scholar 

  92. M. Sugawara et al., Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers. Phys. Rev. B 69(23), 235332 (2004)

    Article  ADS  Google Scholar 

  93. O. Qasaimeh, Theory of four-wave mixing wavelength conversion in quantum dot semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 16(4), 993–995 (2004)

    Article  ADS  Google Scholar 

  94. T. Akiyama, M. Sugawara, Y. Arakawa, Quantum-dot semiconductor optical amplifiers. Proc. of the IEEE 95(9), 1757–1766 (2007)

    Article  Google Scholar 

  95. N. Majer, Nonlinear gain dynamics of quantum dot optical amplifiers. Doctoral thesis, Technische Universität Berlin (2012)

    Google Scholar 

  96. T. Akiyama et al., Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices. IEEE J. Quantum Electron. 37(8), 1059–1065 (2001)

    Article  ADS  Google Scholar 

  97. T.W. Berg, J. Mørk, J.M. Hvam, Gain dynamics and saturation in semiconductor quantum dot amplifiers. New J. Phys. 6(178), 1–23 (2004)

    Google Scholar 

  98. D. Nielsen, S.L. Chuang, Four-wave mixing and wavelength conversion in quantum dots. Phys. Rev. B 81, 035305 (2010)

    Article  ADS  Google Scholar 

  99. M. Matsuura, N. Kishi, High-speed wavelength conversion of RZ-DPSK signal using FWM in a quantum-dot SOA. IEEE Photonics Technol. Lett. 23(10), 615–617 (2011)

    Article  ADS  Google Scholar 

  100. M. Bayer, A. Forchel, Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B 65(4), 041308 (2002)

    Article  ADS  Google Scholar 

  101. K. Matsuda et al., Homogeneous linewidth broadening in a In 0.5Ga 0.5As/GaAs single quantum dot at room temperature investigated using a highly sensitive near-field scanning optical microscope. Phys. Rev. B 63(12), 121304 (2001)

    Article  ADS  Google Scholar 

  102. R. Ludwig et al., Ultrafast wavelength conversion and switching by four-wave mixing in semiconductor laser amplifiers, in Ultrafast Electronics and Optoelectronics. 1995, UMC2

    Google Scholar 

  103. G. Grosskopf, R. Ludwig, H.G. Weber, 140 Mbit/s DPSK transmission using an all-optical frequency convertor with a 4000 GHz conversion range. Electron. Lett. 24(17), 1106–1107 (1988)

    Article  Google Scholar 

  104. N. Schunk et al., Frequency conversion by nearly-degenerate four-wave mixing in travellingwave semiconductor laser amplifiers. IEE Proc. Optoelectron. 137(4), 209–214 (1990)

    Article  Google Scholar 

  105. G. Contestabile et al., Efficiency attening and equalization of frequency up- and downconversion using four-wave mixing in semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 10(10), 1398–1400 (1998)

    Article  ADS  Google Scholar 

  106. T.J. Morgan, J.P.R. Lacey, R.S. Tucker, Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency. IEEE Photonics Technol. Lett. 10(10), 1401–1403 (1998)

    Article  ADS  Google Scholar 

  107. I. Tomkos et al., Performance of a reconfigurable wavelength converter based on dualpump- wave mixing in a semiconductor optical amplifier. IEEE Photonics Technol. Lett. 10(10), 1404–1406 (1998)

    Article  ADS  Google Scholar 

  108. G. Contestabile et al., All-optical wavelength multicasting in a QD-SOA. IEEE J. Quantum Electron. 47(4), 541–547 (2011)

    Article  ADS  Google Scholar 

  109. G. Contestabile et al., 100 nm-bandwidth positive-efficiency wavelength conversion for m-PSK and m-QAM signals in QD-SOA, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC). 2013, OTh1C.6

    Google Scholar 

  110. M. Matsuura, N. Kishi, 40-Gbit/s RZ-DPSK wavelength conversion using four-wave mixing in a quantum dot SOA, in Optical Fiber Communication Conference (OFC) and National Fiber Optic Engineers Conference (NFOEC). 2011, JThA024

    Google Scholar 

  111. G. Contestabile et al., Ultra-broad band, low power, highly efficient coherent wavelength conversion in quantum dot SOA. Opt. Express 20(25), 27902–27907 (2012)

    Article  ADS  Google Scholar 

  112. C. Meuer et al., Wavelength conversion of 40-Gb/s NRZ DPSK signals within a 45-nm range using a 1.3 \(\upmu \)m quantum-dot semiconductor optical amplifier, in European Conference and Exhibition on Optical Communication (ECOC). 2011, We.10.P1.26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmeckebier .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmeckebier, H. (2017). Signal Processing—Wavelength Conversion. In: Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44275-4_8

Download citation

Publish with us

Policies and ethics