Skip to main content

Samples and Characterization

  • Chapter
  • First Online:
  • 544 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The chapter focuses first on the realization of semiconductor optical amplifiers (SOAs), particularly the realization of p-n junctions, the guiding of current and light as well as the suppression of the cavity. Subsequently, the series of samples used for experiments throughout the thesis is presented and compared with commercially available devices. Finally, various static and dynamic properties of the samples series are presented and discussed, e.g. the dependence of gain and gain bandwidth as well as the characteristics of gain and phase dynamics of quantum-dot SOAs focused on the intra-dot and dot-reservoir coupling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Parts of this chapter have been previously published in [2–16]. 2: Fiol 2009; 3: Bimberg 2009a; 4: Bimberg 2009c; 5: Meuer 2011a; 6: Meuer 2011b; 7: Meuer 2011c; 8: Schmeckebier 2011; 9: Schmeckebier 2012; 10: Kaptan 2014a; 11: Kaptan 2014b; 12: Schmeckebier 2014a; 13: Rohm 2015a; 14: Zeghuzi 2015a; 15: Zeghuzi 2015b; 16: Schmeckebier 2015a.

  2. 2.

    Following Sect. 2.2.5, the chip noise figure is 7.3 dB, taking into account the 4.5 dB coupling losses. Further 3 dB can be attributed to the total inversion. Hence, a noise figure in the order of 4.3 dB can be assigned to the waveguide and the structure.

  3. 3.

    In comparison to the deeply-edged QD SOA No. 1, a noise figure in the order of 1.9 dB can be assigned to the waveguide and structure of the shallow edged QD SOA No. 2.

  4. 4.

    Taking into account the O-band SMF loss of 0.35 dB/km discussed in Chap. 1.

  5. 5.

    The design of this device is similar to QD SOA No. 3–5: Do 1111, shallow etched 4 µm ridge waveguide, 8\(^\circ \) tilted, AR-coated facets.

  6. 6.

    The stronger gain reduction observed for the 5 mm long device is caused by the onset of lasing on the ES ASE emission probably to a reflection from the setup. In contrast, the large-signal experiments in the subsequent chapters are all performed with the identical device without the onset of ES lasing.

  7. 7.

    This means: Wafer Do 1111, shallow etched 4 µm ridge waveguide, 8\(^\circ \) tilted, AR-coated facets.

  8. 8.

    A QD mode-locked laser (MLL) with a cavity length of 1.012 ± 0.012 mm processed out of a comparable wafer like the sectioned QD SOA exhibits a pulse repetition rate of 39.85 ± 0.06 GHz [48, 49]. Hence, the repetition rate for a comparable 7 mm long laser would be 5.76 ± 0.06 GHz.

  9. 9.

    A 40 GBd differential phase-shift keying (DPSK) modulated input signal is detected with an optical modulation analyzer (OMA). The DPSK modulation schema as well as the coherent detection are introduced in Chap. 4. A detailed setup description is given in Sect. 6.2.

  10. 10.

    The design of this device is similar to QD SOA No. 6 (page 50): Do 1202, shallow etched 4 µm ridge waveguide, 8\(^\circ \) tilted, AR-coated facets.

  11. 11.

    The 90:10 % gain recovery time is the time required to recover from 90 to 10 % of the difference between original gain and peak gain change.

  12. 12.

    Details on the meaning of both values, please consider [75].

References

  1. A.R. Kovsh et al., InAs/InGaAs/GaAs quantum dot lasers of 1.3 \(\upmu \)m range with enhanced optical gain. J. Cryst. Growth 251(1–4), 729–736 (2003)

    Google Scholar 

  2. Y. Nakata, Y. Sugiyama, M. Sugawara, Molecular beam epitaxial growth of selfassembled InAs/GaAs quantum dots, in Self-assembled InGaAs/GaAs Quantum Dots, 1st end, ed. by M. Sugawara (Academic Press, London, 1999), p. 368

    Google Scholar 

  3. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures, 1st edn. (Wiley, London, 1998)

    Google Scholar 

  4. D. Bimberg (ed.), Semiconductor Nanostructures, 2nd edn. (Springer, Berlin, 2008)

    Google Scholar 

  5. M. Kuntz, Modulated InGaAs/GaAs quantum dot lasers. Doctoral thesis. Technical University of Berlin (2006)

    Google Scholar 

  6. H.Y. Liu et al., P-doped 1.3 \(\upmu \)m InAs/GaAs quantum-dot laser with a low threshold current density and high differential effciency. Appl. Phys. Lett. 89(7), 073113 (2006)

    Article  ADS  Google Scholar 

  7. A. Lenz et al., Limits of In(Ga)As/GaAs quantum dot growth. Phys. Status Solidi 246(4), 717–720 (2009)

    Article  Google Scholar 

  8. H. Eisele et al., Change of InAs/GaAs quantum dot shape and composition during capping. J. Appl. Phys. 104(12), 124301 (2008)

    Article  ADS  Google Scholar 

  9. H. Eisele et al., Atomic structure of InAs and InGaAs quantum dots determined by cross-sectional scanning tunneling microscopy. J. Cryst. Growth 248, 322–327 (2003)

    Article  ADS  Google Scholar 

  10. M. Laemmlin, GaAs-based semiconductor optical amplifiers with quantum dots as an active medium. Doctoral thesis (2007)

    Google Scholar 

  11. D. Marcuse, Reflection loss of laser mode from tilted end mirror. J. Lightw. Technol. 7(2), 336–339 (1989)

    Article  ADS  Google Scholar 

  12. B.R. Bennett, R.A. Soref, J.A. del Alamo, Carrier-induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron. 26(1), 113–122 (1990)

    Article  ADS  Google Scholar 

  13. J. Kischkat et al., Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride. Appl. Opt. 51(28), 6789–6798 (2012)

    Article  ADS  Google Scholar 

  14. Sh.A Furman, A.V. Tikhonravov, Basics of Optics of Multilayer Systems, 1st edn. (Editions Frontièeres, Paris, 1992)

    Google Scholar 

  15. L. Gao, F. Lemarchand, M. Lequime, Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs. J. Eur. Opt. Soc. Rapid Publ. 8, 13010 (2013)

    Article  Google Scholar 

  16. J.R. Devore, Refractive indices of rutile and sphalerite. J. Opt. Soc. Am. 41(6), 416–417 (1951)

    Article  ADS  Google Scholar 

  17. C. Meuer, GaAs-based quantum-dot semiconductor optical amplifiers at 1.3 \(\upmu \)m for all-optical networks. Doctoral thesis. Technical University of Berlin (2011), p. 155

    Google Scholar 

  18. N. Kirstaedter et al., Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl. Phys. Lett. 69(9), 1226 (1996)

    Article  ADS  Google Scholar 

  19. A. Kovsh et al., Quantum dot laser with 75nm broad spectrum of emission. Opt. Lett. 32(7), 793–795 (2007)

    Article  ADS  Google Scholar 

  20. M. Hopkinson et al., High power broadband superluminescent diodes with chirped multiple quantum dots. Electron. Lett. 43(19), 1045–1047 (2007)

    Article  Google Scholar 

  21. T. Yamatoya et al., High power GaInAsP/InP strained quantum well superluminescent diode with tapered active region. Jpn. J. Appl. Phys. 38, 5121–5122 (1999)

    Article  ADS  Google Scholar 

  22. M. Yamada et al., Low-noise and high-power Pr/sup 3+/-doped fluoride fiber amplifier. IEEE Photonics Technol. Lett. 7(8), 869–871 (1995)

    Article  ADS  Google Scholar 

  23. L.H. Li et al., Wide emission spectrum from superluminescent diodes with chirped quantum dot multilayers. Electron. Lett. 41(1), 41–43 (2005)

    Article  Google Scholar 

  24. T. Akiyama et al., An ultrawide-band semiconductor optical amplifier having an extremely high penalty-free output power of 23 dBm achieved with quantum dots. IEEE Photonics Technol. Lett. 17(8), 1614–1616 (2005)

    Article  ADS  Google Scholar 

  25. Y.-S. Cho, W.-Y. Choi, Analysis and optimization of polarization-insensitive semiconductor optical amplifiers with delta-strained quantum wells. IEEE J. Quantum Electron. 37(4), 574–579 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  26. T. Kita et al., Polarization-independent photoluminescence from columnar InAs/GaAs self-assembled quantum dots. Jpn. J. Appl. Phys. 41, L1143–L1145 (2002)

    Article  ADS  Google Scholar 

  27. J. Jin et al., Fabrication and complete characterization of polarization insensitive 1310 nm InGaAsP-InP quantum-well semiconductor optical amplifiers. Semicond. Sci. Technol. 19(1), 120 (2004)

    Article  ADS  Google Scholar 

  28. T. Akiyama, M. Sugawara, Y. Arakawa, Quantum-dot semiconductor optical amplifiers. Proc. IEEE 95(9), 1757–1766 (2007)

    Article  Google Scholar 

  29. N. Yasuoka et al., Quantum-dot semiconductor optical amplifiers with polarizationindependent gains in 1.5 \(\upmu \)m wavelength bands. IEEE Photonics Technol. Lett. 20(23), 1908–1910 (2008)

    Article  ADS  Google Scholar 

  30. M. Mikulla, Tapered high-power, high-brightness diode lasers: design and performance, in High-Power Diode Lasers: Fundamentals, Technology, Applications, 1st edn., ed. by R. Diehl (Springer, Berlin, 2000)

    Google Scholar 

  31. P. Loosen, Cooling and packaging of high-power diode lasers, in High-Power Diode Lasers: Fundamentals, Technology, Applications, 1st edn., ed. by R. Diehl (Springer, Berlin, 2000)

    Google Scholar 

  32. K. Boucke, Packaging of diode laser bars, in High Power Diode Lasers: Technology and Applications, 2nd edn., ed. by F. Bachmann, P. Loosen, R. Poprawe (Springer, Berlin, 2007)

    Google Scholar 

  33. S. Weiss, E. Zakel, H. Reichl, Mounting of high power laser diodes on diamond heatsinks. IEEE Trans. Componen. Packag. Manuf. Technol. Part A 19(1), 46–53 (1996)

    Google Scholar 

  34. T. Kettler et al., High-brightness and ultranarrow-beam 850-nm GaAs/AlGaAs photonic band crystal lasers and single-mode arrays. IEEE J. Sel. Top. Quantum Electron. 15(3), 901–908 (2009)

    Article  Google Scholar 

  35. R. Bonk et al., Linear semiconductor optical amplifiers, in Fibre Optic Communication: Key Devices, 1st edn., ed. by H. Venghaus, N. Grote (Springer, Berlin, 2012), p. 682

    Google Scholar 

  36. C.M. Weinert, Design of fiber-matched uncladded rib waveguides on InP with polarizationindependent mode matching loss of 1 dB. IEEE Photonics Technol. Lett. 8(8), 1049–1051 (1996). Aug

    Article  ADS  Google Scholar 

  37. T.L. Koch et al., Tapered waveguide InGaAs/InGaAsP multiple-quantum-well lasers. IEEE Photonics Technol. Lett. 2(2), 88–90 (1990)

    Article  ADS  Google Scholar 

  38. H. Kobayashi et al., Tapered thickness MQW waveguide BH MQW lasers. IEEE Photonics Technol. Lett. 6(9), 1080–1081 (1994)

    Article  ADS  Google Scholar 

  39. Y. Tohmori et al., Spot-size converted 1.3 \(\upmu \)m laser with butt-jointed selectively grown vertically tapered waveguide. Electron. Lett. 31(13), 1069–1070 (1995)

    Article  Google Scholar 

  40. K. Kasaya et al., A simple laterally tapered waveguide for low-loss coupling to singlemode fibers. IEEE Photonics Technol. Lett. 5(3), 345–347 (1993)

    Article  ADS  Google Scholar 

  41. ITU-T, ITU-T G.989.1 03/2013, series G: transmission systems and media, digital systems and networks; digital sections and digital line system—optical line systems for local and access networks (2013)

    Google Scholar 

  42. C. Schmidt-Langhorst et al., Quantum-dot semiconductor optical booster amplifier with ultrafast gain recovery for pattern-effect free amplification of 80 Gb/s RZ-OOK data signals, in European Conference and Exhibition on Optical Communication (ECOC), Vienna, Austria (2009), p. 6.2.1

    Google Scholar 

  43. M. Kuntz et al., High-speed mode-locked quantum-dot lasers and optical amplifiers. Proc. IEEE 95(9), 1767–1778 (2007)

    Article  Google Scholar 

  44. E.U. Rafailov, M.A. Cataluna, W. Sibbett, Mode-locked quantum-dot lasers. Nat. Photonics 1(7), 395–401 (2007)

    Article  ADS  Google Scholar 

  45. M.G. Thompson et al., InGaAs quantum-dot mode-locked laser diodes. IEEE J. Sel. Top. Quantum Electron. 15(3), 661–672 (2009)

    Article  Google Scholar 

  46. H. Schmeckebier et al., Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s. Opt. Express 18(4), 3415–3425 (2010)

    Article  ADS  Google Scholar 

  47. G. Fiol, 1.3 \(\upmu \)m monolithic mode-locked quantum-dot semiconductor lasers. Doctoral thesis (2011), p. 169

    Google Scholar 

  48. M. Spiegelberg, Emission hochfrequenter Pulse von Nanostruktur-Lasern. Master thesis. Technische Universitaet Berlin (2015), p. 70

    Google Scholar 

  49. E. Rouvalis et al., 40 Ghz quantum quantum-dot mode-locked laser packaged module operating at 1310 nm, in Asian Communication and Photonics Conference (ACP), 2014, AW3A.2

    Google Scholar 

  50. A. Schliwa, M. Winkelnkemper, D. Bimberg, Impact of size, shape, and composition on piezoelectric effects and electronic properties of In(Ga)As/GaAs quantum dots. Phys. Rev. B 76(20), 205324 (2007)

    Article  ADS  Google Scholar 

  51. A. Schliwa, Electronic properties of quantum dots. Doctoral thesis, Technische Universitaet Berlin (2007)

    Google Scholar 

  52. G. Eisenstein et al., Ultrafast gain dynamics in 1.5 \(\upmu \)m multiple quantum well optical amplifiers. Appl. Phys. Lett. 58(2), 158 (1991)

    Article  ADS  Google Scholar 

  53. S. Weiss et al., Carrier capture times in 1.5 \(\upmu \)m multiple quantum well optical amplifiers. Appl. Phys. Lett. 60(1), 9 (1992)

    Article  ADS  Google Scholar 

  54. F. Girardin, G. Guekos, A. Houbavlis, Gain recovery of bulk semiconductor optical amplifiers. IEEE Photonics Technol. Lett. 10(6), 784–786 (1998)

    Article  ADS  Google Scholar 

  55. P. Borri et al., Spectral hole-burning and carrier-heating dynamics in InGaAs quantumdot amplifiers. IEEE J. Sel. Top. Quantum Electron. 6(3), 544–551 (2000)

    Article  Google Scholar 

  56. T.W. Berg et al., Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photonics Technol. Lett. 13(6), 541–543 (2001)

    Article  ADS  Google Scholar 

  57. S. Schneider et al., Excited-state gain dynamics in InGaAs quantum-dot amplifiers. IEEE Photonics Technol. Lett. 17(10), 2014–2016 (2005)

    Article  ADS  Google Scholar 

  58. P. Borri et al., Ultrafast carrier dynamics in InGaAs quantum dot materials and devices. J. Opt. A Pure Appl. Opt. 8(4), S33–S46 (2006)

    Article  ADS  Google Scholar 

  59. A.J. Zilkie et al., Carrier dynamics of quantum-dot, quantum-dash, and quantum-well semiconductor optical amplifiers operating at 1.55 \(\upmu \)m. IEEE J. Quantum Electron. 43(11), 982–991 (2007)

    Article  ADS  Google Scholar 

  60. T. Piwonski et al., Carrier capture dynamics of InAs/GaAs quantum dots. Appl. Phys. Lett. 90(12), 122108 (2007)

    Article  ADS  Google Scholar 

  61. I. O’Driscoll et al., Phase dynamics of InAs/GaAs quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 91(26), 263506 (2007)

    Article  ADS  Google Scholar 

  62. T. Vallaitis et al., Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express 16(1), 170–178 (2008)

    Article  ADS  Google Scholar 

  63. T. Erneux et al., The fast recovery dynamics of a quantum dot semiconductor optical amplifier. Appl. Phys. Lett. 94(11), 113501 (2009)

    Article  ADS  Google Scholar 

  64. J. Gomis-Bresco et al., Time-resolved amplified spontaneous emission in quantum dots. Appl. Phys. Lett. 97(25), 251106 (2010)

    Article  ADS  Google Scholar 

  65. J. Kim et al., Role of carrier reservoirs on the slow phase recovery of quantum dot semiconductor optical amplifiers. Appl. Phys. Lett. 94(4), 041112 (2009)

    Article  ADS  Google Scholar 

  66. A.V. Uskov et al., Carrier-induced refractive index in quantum dot structures due to transitions from discrete quantum dot levels to continuum states. Appl. Phys. Lett. 84(2004), 272–274 (2004)

    Article  ADS  Google Scholar 

  67. G.P. Agrawal, N.A. Olsson, Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers. IEEE J. Quantum Electron. 25(11), 2297–2306 (1989)

    Article  ADS  Google Scholar 

  68. F. Romstad et al., Measurement of pulse amplitude and phase distortion in a semiconductor optical amplifier: from pulse compression to breakup. IEEE Photonics Technol. Lett. 12(12), 1674–1676 (2000)

    Article  ADS  Google Scholar 

  69. P.P. Baveja et al., Self-phase modulation in semiconductor optical amplifiers: impact of amplified spontaneous emission. IEEE J. Quantum Electron. 46(9), 1396–1403 (2010)

    Article  ADS  Google Scholar 

  70. D. Bimberg et al., InGaAs-GaAs quantum-dot lasers. IEEE J. Sel. Top. Quantum Electron. 3(2), 196–205 (1997)

    Article  Google Scholar 

  71. A.A. Ukhanov et al., Comparison of the carrier induced refractive index, gain, and linewidth enhancement factor in quantum dot and quantum well lasers. Appl. Phys. Lett. 84(7), 1058–1060 (2004)

    Article  ADS  Google Scholar 

  72. S. Schneider et al., Linewidth enhancement factor in InGaAs quantum-dot amplifiers. IEEE J. Quantum Electron. 40(10), 1423–1429 (2004)

    Article  ADS  Google Scholar 

  73. M. Gioannini, A. Sevega, I. Montrosset, Simulations of differential gain and linewidth enhancement factor of quantum dot semiconductor lasers. Opt. Quantum Electron. 38(4–6), 381–394 (2006)

    Article  Google Scholar 

  74. T. Vallaitis et al., Quantum dot SOA input power dynamic range improvement for differential-phase encoded signals. Opt. Express 18(6), 6270–6276 (2010)

    Article  ADS  Google Scholar 

  75. R. Trebino, Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses, 2nd edn. (Springer, Berlin, 2002)

    Google Scholar 

  76. H. Schmeckebier, Analyse von optischen Pulsen modengekoppelter Quantenpunkt-Halbleiterlaser. Diploma thesis (2009)

    Google Scholar 

  77. G. Contestabile et al., Regenerative amplification by using self-phase modulation in a quantum-dot SOA. IEEE Photonics Technol. Lett. 22(7), 492–494 (2010)

    Article  ADS  Google Scholar 

  78. Y. Kaptan et al., Gain dynamics of quantum dot devices for dual-state operation. Appl. Phys. Lett. 104(26), 261108 (2014)

    Article  ADS  Google Scholar 

  79. B. Herzog. Gaindynamik in Quantenpunktverstärkern und-Lasern. Master thesis. Technische Universität Berlin (2014)

    Google Scholar 

  80. S. Dommers et al., Complete ground state gain recovery after ultrashort double pulses in quantum dot based semiconductor optical amplifier. Appl. Phys. Lett. 90(3), 033508 (2007)

    Article  ADS  Google Scholar 

  81. A. Röhm, Dynamic scenarios in two-state quantum dot lasers. Master thesis, Technische Universität Berlin (2015)

    Google Scholar 

  82. A. Röhm, B. Lingnau, K. Lüdge, Understanding ground-state quenching in quantumdot lasers. IEEE J. Quantum Electron. 51(1), 1–11 (2015)

    Article  ADS  Google Scholar 

  83. B. Lingnau, Nonlinear and nonequilibrium dynamics of quantum-dot optoelectronic devices. Doctoral thesis, Technische Universität Berlin (2015)

    Google Scholar 

  84. B. Lingnau, W.W. Chow, K. Lüdge, Amplitude-phase coupling and chirp in quantum-dot lasers: inuence of charge carrier scattering dynamics. Opt. Express 22(5), 4867–4879 (2014)

    Article  ADS  Google Scholar 

  85. Y. Kaptan et al., Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation. Appl. Phys. Lett. 105(19), 191105 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schmeckebier .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmeckebier, H. (2017). Samples and Characterization. In: Quantum-Dot-Based Semiconductor Optical Amplifiers for O-Band Optical Communication. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-44275-4_3

Download citation

Publish with us

Policies and ethics