Skip to main content

Influence of Inlet Positions on the Flow Behavior Inside a Photoreactor

  • Conference paper
  • First Online:
Information Technology and Computational Physics (CITCEP 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 462))

Abstract

Efficiency of a photoreactor depends on the irradiation dose. Fluid residence time distribution (RTD) reflects hydrodynamic behavior of the flow. A computational model was built on a base and fitting a previous radiotracer experiment. Results of three simulations for three different configurations and height flow rate are presented and discussed below. This paper shows usefulness of CFD modeling as an imaging tool, which can be used to retrieve detailed, local information about the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moreira, R.M., Pinto, A.M.F., Mesnier, R., Leclerc, J-P.: Influence of inlet positions on the flow behaviour inside a photoreactor using radiotracers and colored tracer investigation. Appl. Radiat. Isot. 65, 419–427 (2004)

    Google Scholar 

  2. Sugiharto, S., Stegowski, Z., Furman, L., Su’Ud, Z., Kurniadi, R., Waris, A., Abidin, Z.: Dispersion determination in a turbulent pipeflow using radiotracer data and CFD analysis. Comput. Fluids 79, 77–81 (2013)

    Article  Google Scholar 

  3. Furman, L., Stęgowski, Z.: CFD models of jet mixing and their validation by tracer experiments. Chem. Eng. Process. 50(3), 300–304 (2011). ISSN 0255-2701

    Google Scholar 

  4. Danckwerts, P.V.: Continuous flow systems, distribution of residence times. Chem. Eng. Sci. 2(1), 1–13 (1953)

    Article  Google Scholar 

  5. Dudukovic, M.P.: Tracer methods in chemical reactors. Techniques and applications. Chem. React. Des. Technol., NATO ASI Series (1986)

    Book  Google Scholar 

  6. Levenspiel, O.: Chemical Reaction Engineering, 3rd edn. Wiley, New York (1999)

    Google Scholar 

  7. Constant-Machado, H., Lecrerc, J.P., Avilan, E., Landaeta, G., Anorga, N., Capote, O.: Flow modeling of a battery of industrial crude oil/gas separators using 113mIm tracer experiments. Chem. Eng. Process. 44 (2005)

    Google Scholar 

  8. Haris, A.T., Davidson, J.F., Thorpe, R.B.: A novel method for measuring the residence time distribution in short time scale particulate systems. Chem. Eng. J. 89 (2002)

    Google Scholar 

  9. Hocine, S.: Identification de modeles de procedes par programmation mixte deterministe. Ph.D. thesis, INP Toulouse (2006)

    Google Scholar 

  10. Hocine, S., Pibouleau, L., Azzaro-Pantel, C., Domenech, S.: Modelling systems defined by RTD curves. Comput. Chem. Eng. 32 (2008)

    Google Scholar 

  11. Haris, A.T., Davidson, J.F., Thorpe, R.B.: Particle residence time distributions in circulating fluidised beds. Chem. Eng. Sci. 58 (2003)

    Google Scholar 

  12. Blet, V., Berne, Ph., Chaussy, C., Perrin, S., Schweich, D.: Characterization of a packed column using radioactive tracers. Chem. Eng. Sci. (1999)

    Google Scholar 

  13. FLUENT Inc., FLUENT 6 User’s Manual, 2006

    Google Scholar 

  14. Osborne, R.: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. London A 186, 123–164 (1895)

    Article  Google Scholar 

  15. Prandtl, L.: Z. angew. Meth. Mech 5(1), 136–139 (1925)

    Google Scholar 

  16. Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., Speziale, C.G.: Development of turbulence models for shear flows by a double expansion technique. Phys. Fluids A 4(7), 1510–1520 (1992)

    Google Scholar 

  17. Tennekes, H., Lumley, J.L.: A First Course in Turbulence.

    Google Scholar 

  18. Zhang, Z., Chen, Q.: Experimental measurements and numerical simulation of particle transport and distribution in ventilated rooms. Atmos. Environ. 40, 419–427 (2006)

    Google Scholar 

  19. Cantu-Perez, A., Barrass, S., Gavriilidis, A.: Residence time distributions in microchannels: comparison between channels with herringbone structures and rectangular channel. Chem. Eng. J. 160 (2010)

    Google Scholar 

  20. Cantu-Perez, A., Barrass, S., Gavriilidis, A.: Hydrodynamics and reaction studies in a layered herringbone channel. Chem. Eng. J. 167 (2011)

    Google Scholar 

  21. Pruvost, J., Legrand, J., Legentilhomme, P., Doubliez, L.: Particle image velocimetry investigation of the flow-field of a 3D turbulent annular swirling decaying flow induced by means of a tangential inlet. Exp. Fluids 29 (2000)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of originators [1] for providing experimental data needed to lead simulations made for this research. This research was supported in part by PL-Grid Infrastructure. M.P. acknowledges his benefit from Ph.D. scholarships founded by Marian Smoluchowski Cracow Scientific Consortium—KNOW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Poliński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this paper

Cite this paper

Poliński, M., Stęgowski, Z. (2017). Influence of Inlet Positions on the Flow Behavior Inside a Photoreactor. In: Kulczycki, P., Kóczy, L., Mesiar, R., Kacprzyk, J. (eds) Information Technology and Computational Physics. CITCEP 2016. Advances in Intelligent Systems and Computing, vol 462. Springer, Cham. https://doi.org/10.1007/978-3-319-44260-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44260-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44259-4

  • Online ISBN: 978-3-319-44260-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics