Special Applications of Bioactive Glasses in Otology and Ophthalmology

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)

Abstract

The invention of bioactive glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) more than 45 years ago posed the basis of modern regenerative medicine introducing the concept that a material implanted in the body can not only form a tight bond with living tissues but also stimulate the growth of new healthy tissue. Bioactive glasses are traditionally used for the repair, reconstruction and augmentation of hard tissues in orthopaedics and dentistry due to their ability to create a tight interface with calcified tissues. Most studies on bioactive glasses and glass-ceramics have been focused on their use in these two clinical fields, however some emerging applications are arising in other medical areas. In fact, available literature indicates that bioactive glasses are able to bond to soft tissues, too, and can exhibit an additional range of highly attractive properties (e.g. angiogenesis, antibacterial effect) which could expand dramatically their potential and impact in science and medicine. This chapter reviews the special applications of bioactive glasses in otology (substitution of middle ear ossicles, cochlear implants, mastoid cavity obliteration) and ocular surgery (orbital implants, artificial cornea, orbital floor repair), in which the ability to bond to soft tissues is a fundamental property. A comprehensive picture of the existing devices for such applications is presented as well as a prospect for the future, with the aim of providing useful stimuli for further research in these two fascinating and crucial areas for patient’s life quality.

Keywords

Bioglass Bioactivity Tissue engineering Angiogenesis Antibacterial 

References

  1. 1.
    Ahmed, I., Lewis, M., Olsen, I., Knowles, J.C.: Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25, 491–499 (2004)Google Scholar
  2. 2.
    Ahmed, I., Lewis, M., Olsen, I., Knowles, J.C.: Phosphate glasses for tissue engineering: part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials 25, 501–507 (2004)Google Scholar
  3. 3.
    Aitasalo, K., Kinnunen, I., Palmgren, J., Varpula, M.: Repair of orbital floor fractures with bioactive glass implants. J. Oral Maxillofac. Surg. 59, 1390–1395 (2001)Google Scholar
  4. 4.
    Andersson, O.H., Liu, G., Karlsson, K.H., Juhanoja, J.: In vivo behaviour of glasses in the SiO2–Na2O–CaO–P2O5–Al2O3–B2O3 system. J. Mater. Sci. Mater. Med. 1, 219–227 (1990)Google Scholar
  5. 5.
    Anselme, K., Davidson, P., Popa, A.M., Giazzon, M., Liley, M., Ploux, L.: The interactions of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater. 6, 3824–3846 (2010)Google Scholar
  6. 6.
    Avadhanam, V.S., Smith, H.E., Liu, C.: Keratoprostheses for corneal blindness: a review of contemporary devices. Clin. Ophthalmol. 9, 697–720 (2015)Google Scholar
  7. 7.
    Bahmad Jr., F., Merchant, S.N.: Histopathology of ossicular grafts and implants in chronic otitis media. Ann. Otol. Rhinol. Laryngol. 116, 181–191 (2007)Google Scholar
  8. 8.
    Baino, F.: Biomaterials and implants for orbital floor repair. Acta Biomater. 7, 3248–3266 (2011)Google Scholar
  9. 9.
    Baino, F.: How can bioactive glasses be useful in ocular surgery? J. Biomed. Mater. Res. A 103, 1259–1275 (2015)Google Scholar
  10. 10.
    Baino, F., Ferraris, S., Miola, M., Perero, S., Verné, E., Coggiola, A., Dolcino, D., Ferraris, M.: Novel antibacterial ocular prostheses: proof of concept and physico-chemical characterization. Mater. Sci. Eng. C 60, 467–474 (2016)Google Scholar
  11. 11.
    Baino, F., Novajra, G., Miguez-Pacheco, V., Boccaccini, A.R., Vitale-Brovarone, C.: Bioactive glasses: special applications outside the skeletal system. J. Non-Cryst. Solids 432, 15–30 (2016)Google Scholar
  12. 12.
    Baino, F., Perero, S., Ferraris, S., Miola, M., Balagna, C., Verné, E., Vitale-Brovarone, C., Coggiola, A., Dolcino, D., Ferraris, M.: Biomaterials for orbital implants and ocular prostheses: Overview and future prospects. Acta Biomater. 10, 1064–1087 (2014)Google Scholar
  13. 13.
    Beleites, E., Neupert, G., Augsten, G., Vogel, W., Schubert, H.: Rasterelektronenmikroskopische Untersuchungen des Zellwachstums auf maschinell bearbeitbarer Biovitrokeramik und Glaskohlenstoff in vitro und in vivo. Laryngo-Rhino-Otol. 64, 217–220 (1985)Google Scholar
  14. 14.
    Blayney, A.W., Bebear, J.P., Williams, K.R., Portmann, M.: Ceravital in ossiculoplasty: experimental studies and early clinical results. Am. J. Otol. 100, 1359–1366 (1986)Google Scholar
  15. 15.
    Brandao, S.M., Schellini, S.A., Moraes, A.D., Padovani, C.R., Pellizzon, C.H., Peitl, O., Zanotto, E.D.: Biocompatibility analysis of Bioglass® 45S5 and Biosilicate® implants in the rabbit eviscerated socket. Orbit 3, 143–149 (2012)Google Scholar
  16. 16.
    Brandao, S.M., Schellini, S.A., Padovani, C.R., Peitl, O., Hashimoto, E.: Biocompatibility analysis of Bioglass® 45S5 and Biosilicate® cone in rabbit eviscerated cavity. Rev. Bras. Oftalmol. 72, 21–25 (2013)Google Scholar
  17. 17.
    Brink, M., Turunen, T., Happonen, R., Yli-Urpo, A.: Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 37, 114–121 (1997)Google Scholar
  18. 18.
    Cao, W., Hench, L.L.: Bioactive materials. Ceram. Int. 22, 493–507 (1996)CrossRefGoogle Scholar
  19. 19.
    Chalasani, R., Poole-Warren, L., Conway, R.M., Ben-Nissan, B.: Porous orbital implants in enucleation: a systematic review. Surv. Ophthalmol. 52, 145–155 (2007)Google Scholar
  20. 20.
    Chirila, T.V., Hicks, C.R., Dalton, P.D., Vijayasekaran, S., Lou, X., Hong, Y., Clayton, A.B., Ziegelaar, B.W., Fitton, J.H., Platten, S., Crawford, G.J., Constable, I.J.: Artificial cornea. Prog. Polym. Sci. 23, 447–473 (1998)Google Scholar
  21. 21.
    Chowdhury, K., Krause, G.F.: Selection of materials for orbital floor reconstruction. Arch. Otolaryngol. Head Neck Surg. 124, 1398–1401 (1998)Google Scholar
  22. 22.
    Clark, A.E., Pantano, C.G., Hench, L.L.: Auger spectroscopic analysis of Bioglass corrosion films. J. Am. Ceram. Soc. 59, 37–39 (1976)Google Scholar
  23. 23.
    Douek, E., Fourcin, A.J., Moore, B.C.J., Clarke, G.P.: A new approach to the cochlear implant. Proc. R. Soc. Med. 70, 379–383 (1977)Google Scholar
  24. 24.
    Downing, M., Johansson, U., Carlsson, L., Walliker, J.R., Spraggs, P.D., Dodson, H., Hochmair-Desoyer, I.J., Albrektsson, T.: A bone-anchored percutaneous connector system for neural prosthetic applications. Ear Nose Throat J. 76, 328–332 (1997)Google Scholar
  25. 25.
    Falcinelli, G., Falsini, B., Taloni, M., Colliardo, P., Falcinelli, G.: Modified osteo-odonto-keratoprosthesis for treatment of corneal blindness: long-term anatomical and functional outcomes in 181 cases. Arch. Ophthalmol. 123, 1319–1329 (2005)Google Scholar
  26. 26.
    Geyer, G.: Implantate in der Mittelohrchirurgie. Eur. Arch. Otorhinolaryngol. 1, 185–221 (1992)Google Scholar
  27. 27.
    Gross, U., Strunz, V.: Interface of various glasses and glass-ceramics in a bony implantation bed. J. Biomed. Mater. Res. 19, 251–271 (1985)Google Scholar
  28. 28.
    Hantson, P., Mahieu, P., Gersdorff, M., Sindic, C.J., Lauwerys, R.: Encephalopathy with seizures after use of aluminium-containing bone cement. Lancet 344, 1647 (1994)Google Scholar
  29. 29.
    Hench, L.L., Paschall, H.A.: Direct chemical bonding of bioactive glass-ceramic materials and bone. J. Biomed. Mater. Res. Symp. 4, 25–42 (1973)Google Scholar
  30. 30.
    Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 2, 117–141 (1971)Google Scholar
  31. 31.
    Hench, L.L.: Bioceramics—from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991)Google Scholar
  32. 32.
    Hench, L.L.: Bioceramics. J. Am. Ceram. Soc. 81, 1705–1728 (1998)Google Scholar
  33. 33.
    Hench, L.L., Polak, J.: Third-generation biomedical materials. Sci. 295, 1014–1017 (2002)Google Scholar
  34. 34.
    Hench, L.L.: The story of Bioglass®. J. Mater. Sci. Mater. Med. 17, 967–978 (2006)Google Scholar
  35. 35.
    Hench, L.L.: Genetic design of bioactive glass. J. Eur. Ceram. Soc. 29, 1257–1265 (2009)Google Scholar
  36. 36.
    Hench, L.L., Greenspan, D.: Interactions between bioactive glass and collagen: a review and new perspectives. J. Aust. Ceram. Soc. 49, 1–40 (2013)Google Scholar
  37. 37.
    Hicks, C.R., Fitton, J.H., Chirila, T.V., Crawford, G.J., Constable, I.J.: Keratoprostheses: advancing toward a true artificial cornea. Surv. Ophthalmol. 42, 175–189 (1997)Google Scholar
  38. 38.
    Hoffmann, F., Harnisch, J.P., Strunz, V., Bunte, M., Gross, U.M., Manner, K., Bromer, H., Deutscher, K.: Osteo-Keramo-Keratoprothese: eine Modifikation der osteo-odontokeratoprothese nach Strampelli. Klin Monbl Augenheilkd 173, 747–755 (1978)Google Scholar
  39. 39.
    Huang, W., Day, D.E., Kittiratanapiboon, K., Rahaman, M.N.: Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J. Mater. Sci. Mater. Med. 17, 583–596 (2006)Google Scholar
  40. 40.
    Huhtinen, R., Sandeman, S., Rose, S., Fok, E., Howell, C., Fröberg, L., Moritz, N., Hupa, L., Lloyd, A.: Examining porous bio-active glass as a potential osteo-odonto-keratoprosthetic skirt material. J. Mater. Sci. Mater. Med. 24, 1217–1227 (2013)Google Scholar
  41. 41.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)Google Scholar
  42. 42.
    Jordan, D.R.: Anophthalmic orbital implants. Ophthalmol. Clin. N. Am. 13, 587–608 (2000)Google Scholar
  43. 43.
    Kinnunen, I., Aitasalo, K., Pollonen, M., Varpula, M.: Reconstruction of orbital floor fractures using bioactive glass. J Craniofac.-Maxillofac. Surg. 28, 229–234 (2000)Google Scholar
  44. 44.
    Koscielny, S., Beleites, E.: Untersuchungen zum Einfluss von Biokeramiken auf biologische Leistungen von Mikroorganismen. HNO 49, 367–371 (2001)Google Scholar
  45. 45.
    Krause, A.: Intracorneal biocompatibility of glass ceramics. Contactologia 14, 28–31 (1992)Google Scholar
  46. 46.
    Laattala, K., Huhtinen, R., Puska, M., Arstila, H., Hupa, L., Kellomäki, M., Vallittu, P.K.: Bioactive composite for keratoprosthesis skirt. J. Mech. Behav. Biomed. Mater. 4, 1700–1708 (2011)Google Scholar
  47. 47.
    Lakhkar, N.J., Lee, I.H., Kim, H.W., Salih, V., Wall, I.B., Knowles, J.C.: Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses. Adv. Drug Deliv. Rev. 65, 405–420 (2013)Google Scholar
  48. 48.
    Leatherman, B.D., Dornhoffer, J.L.: Bioactive glass ceramic particles as an alternative for mastoid obliteration: results in an animal model. Otol. Neurotol. 23, 657–660 (2002)Google Scholar
  49. 49.
    Linnola, R.J., Happonen, R., Andersson, O.H., Vedel, E., Yli-Urpo, A.U., Krause, U., Laatikainen, L.: Titanium and bioactive glass-ceramic coated titanium as materials for keratoprosthesis. Exp. Eye Res. 63, 471–478 (1996)Google Scholar
  50. 50.
    Lobel, K.: Ossicular replacement prostheses. In: Hench, L.L., Wilson, J. (eds.) Clinical Performance of Skeletal Prostheses, pp. 214–236. Chapman and Hall, London (1996)Google Scholar
  51. 51.
    Ma, X., Schou, K.R., Maloney-Schou, M., Harwin, F.M., Ng, J.D.: The porous polyethylene/bioglass spherical orbital implant: a retrospective study of 170 cases. Ophthal. Plast. Reconstr. Surg. 27, 21–27 (2011)Google Scholar
  52. 52.
    Maassen, M.M., Zenner, H.P.: Tympanoplasty type II with ionomeric cement and titaniumgold-angle prostheses. Am. J. Otol. 19, 693–699 (1998)Google Scholar
  53. 53.
    Males, A.G., Gray, R.F.: Mastoid surgery: quantifying the distress in a radical cavity. Clin. Otolaryngol. 19, 194–198 (1994)Google Scholar
  54. 54.
    Mehta, R.P., Harris, J.P.: Mastoid obliteration. Otolaryngol. Clin. N. Am. 39, 1129–1142 (2006)Google Scholar
  55. 55.
    Merwin, G.E.: Bioglass middle ear prosthesis: preliminary report. Ann. Otol. Rhinol. Laryngol. 95, 78–82 (1986)Google Scholar
  56. 56.
    Merwin GE (1990) Review of bioactive materials for otologic and maxillofacial applications. In: Yamamuro T, Hench LL, Wilson J (eds) Handbook on Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics, pp. 323–328. CRC Press, Boca RatonGoogle Scholar
  57. 57.
    Miguez-Pacheco, V., Hench, L.L., Boccaccini, A.R.: Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13, 1–15 (2015)Google Scholar
  58. 58.
    Mok, D., Lessard, L., Cordoba, C., Harris, P.G., Nikolis, A.: A review of materials currently used in orbital floor reconstruction. Can. J. Plast. Surg. 12, 134–140 (2004)Google Scholar
  59. 59.
    Mosher, H.P.: A method of filling the excavated mastoid with a flap from the back of the auricle. Laryngolscope 21, 1158–1163 (1911)Google Scholar
  60. 60.
    Mules, P.H.: Evisceration of the globe with artificial vitreous. Trans. Ophthalmol. Soc. UK 5, 200–206 (1885)Google Scholar
  61. 61.
    Naik, M.N., Murthy, R.K., Honavar, S.G.: Comparison of vascularization of Medpor and Medpor-plus orbital implants: a prospective, randomized study. Ophthalmic Plast. Reconstr. Surg. 6, 463–467 (2007)Google Scholar
  62. 62.
    Peltola, M., Kinnunen, I., Aitasalo, K.: Reconstruction of orbital wall defects with bioactive glass plates. J. Oral Maxillofac. Surg. 66, 639–646 (2008)Google Scholar
  63. 63.
    Reck, R.: Preliminary report: tissue reaction to glass ceramics in the middle ear. Clin. Otolaryngol. 6, 63–65 (1981)Google Scholar
  64. 64.
    Reck, R., Storkel, S., Meyer, A.: Bioactive glass-ceramics in middle ear surgery: an 8-year review. Ann. N. Y. Acad. Sci. 523, 100–106 (1988)Google Scholar
  65. 65.
    Renghini, C., Giuliani, A., Mazzoni, S., Brun, F., Larsson, E., Baino, F., Vitale-Brovarone, C.: Microstructural characterization and in vitro bioactivity of porous glass-ceramic scaffolds for bone regeneration by synchrotron radiation X-ray microtomography. J. Eur. Ceram. Soc. 33, 1553–1565 (2013)Google Scholar
  66. 66.
    Ricci, R., Pecorella, I., Ciardi, A., Della Rocca, C., Di Tondo, U., Marchi, V.: Strampelli’s osteo-odonto-keratoprosthesis. Clinical and histological long-term features of three prostheses. Br. J. Ophthalmol. 76, 232–234 (1992)Google Scholar
  67. 67.
    Rust, K.R., Singleton, G.T., Wilson, J., Antonelli, P.J.: Bioglass middle ear prosthesis: long-term results. Am. J. Otol. 17, 371–374 (1996)Google Scholar
  68. 68.
    Sanders, D.M., Hench, L.L.: Mechanisms of glass corrosion. J. Am. Ceram. Soc. 56, 373–377 (1973)Google Scholar
  69. 69.
    Santos, L., Ferraz, M.P., Shirosaki, Y., Lopes, M.A., Fernandes, M.H., Osaka, A., Santos, J.D.: Degradation studies and biological behavior on an artificial cornea material. Invest. Ophthalmol. Vis. Sci. 52, 4274–4281 (2011)Google Scholar
  70. 70.
    Sarin, J., Grenman, R., Aitasalo, K., Pulkkinen, J.: Bioactive glass S53P4 in mastoid obliteration surgery for chronic otitis media and cerebrospinal fluid leakage. Ann. Otol. Rhinol. Laryngol. 121, 563–569 (2012)Google Scholar
  71. 71.
    Sepulveda, P., Jones, J.R., Hench, L.L.: Bioactive sol-gel foams for tissue repair. J. Biomed. Mater. Res. A 49, 340–348 (2002)Google Scholar
  72. 72.
    Shin, J.W., Lim, J.S., Yoo, G., Byeon, J.H.: An analysis of pure blowout fractures and associated ocular symptoms. J. Craniofac. Surg. 24, 703–707 (2013)Google Scholar
  73. 73.
    Silvola, J.T.: Mastoidectomy cavity obliteration with bioactive glass: a pilot study. Otolaryngol. Head Neck Surg. 147, 119–126 (2012)Google Scholar
  74. 74.
    Stoor, P., Pulkkinen, J., Grénman, R.: Bioactive glass S53P4 in the filling of cavities in the mastoid cell area in surgery for chronic otitis media. Ann. Otol. Rhinol. Laryngol. 119, 377–382 (2010)Google Scholar
  75. 75.
    Suominen, E., Kinnunen, I.: Bioactive glass granules and plates in the reconstruction of defects of the facial bones. Scand. J. Plast. Reconstr. Surg. Hand Surg. 30, 281–289 (1996)CrossRefGoogle Scholar
  76. 76.
    Tanaka Massuda, E., Lisboa Maldonado, E., Teixeira de Lima, J., Jr, Peitl O., Hyppolito, M.A., Apparecido de Oliveira, J.A.: Biosilicate® ototoxicity and vestibulotoxicity evaluation in guinea-pigs. Braz. J. Otorhinolaryngol. 75, 665–668 (2009)CrossRefGoogle Scholar
  77. 77.
    Turck, C., Brandes, G., Krueger, I., Behrens, P., Mojallal, H., Lenarz, T., Stieve, M.: Histological evaluation of novel ossicular chain replacement prostheses: an animal study in rabbits. Acta Otolaryngol. 127, 801–808 (2007)CrossRefGoogle Scholar
  78. 78.
    Villarreal, P.M., Monje, F., Morillo, A.J., Junquera, L.M., Gonzalez, C., Barbon, J.J.: Porous polyethylene implants in orbital floor reconstruction. Plast. Reconstr. Surg. 109, 877–885 (2002)Google Scholar
  79. 79.
    Vogt, J.C., Brandes, G., Ehlert, N., Behrens, P., Nolte, I., Mueller, P.P., Lenarz, T., Stieve, M.: Free Bioverit II implants coated with a nanoporous silica layer in a mouse ear model—a histological study. J. Biomater. Appl. 24, 175–191 (2009)Google Scholar
  80. 80.
    Walliker, J., Carson, H., Douek, E.E., Fourcin, A., Rosen, S.: An extracochlear auditory prosthesis. In: Bansai, P. (ed.) Proceedings of Cochlear Implant Symposium 90, p. 265. Durer, Germany (1987)Google Scholar
  81. 81.
    Wilson, J., Low, S.B.: Bioactive ceramics for periodontal treatment—comparative studies in the Patus monkey. J. Appl. Biomater. 3, 123–129 (1992)Google Scholar
  82. 82.
    Wilson, J., Pigott, G.H., Schoen, F.J., Hench, L.L.: Toxicology and biocompatibility of bioglasses. J. Biomed. Mater. Res. 15, 805–817 (1981)Google Scholar
  83. 83.
    Wilson, J., Douek, E., Rust, K.: Bioglass middle ear devices: ten year clinical results. In: Wilson, J., Hench, L.L., Greenspan, D. (eds.) Bioceramics, pp. 239–246. Pergamon/Elsevier, Oxford (1995)Google Scholar
  84. 84.
    Xu, X., Huang, Z., Wang, C.: Clinical study of bioactive glass ceramics as orbital implants. Bull. Hunan Med. Univ. 22, 440–442 (1997)Google Scholar
  85. 85.
    Xu, X., Wang, C., Huang, T., Ding, L., Huang, Z., Zhang, X.: An experimental study of bioactive glass ceramics as orbital implants. Bull. Hunan Med. Univ. 22, 25–28 (1997)Google Scholar
  86. 86.
    Ye, J., He, J., Wang, C., Yao, K., Gou, Z.: Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol. Lett. 36, 961–968 (2014)CrossRefGoogle Scholar
  87. 87.
    Zikk, D., Rapoport, Y., Bloom, J., Himelfarb, M.Z.: Auditory brain-stem responses in guinea pigs following middle ear implantation of Ceravital. Eur. Arch. Otorhinolaryngol. 248, 102–104 (1990)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Applied Science and Technology Department, Institute of Materials Physics and EngineeringPolitecnico di TorinoTurinItaly

Personalised recommendations