Advertisement

Vitreous Materials for Dental Restoration and Reconstruction

  • Anthony W. WrenEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)

Abstract

Glasses are a highly versatile class of materials that have been utilized for numerous applications in restorative dentistry. Their use in dentistry ranges from reconstruction of the underlying bone tissue used to house or support metallic implants, to glass based adhesive materials for tooth restoration. The destruction of alveolar bone tissue, due to periodontitis or periapical infection, leads to resorption of the underlying bone tissue that needs to support constructs required for implant surgery. The Bioglass based system (SiO2–CaO–Na2O–P2O5) can provide the required ionic dissolution characteristics to promote mineral deposition in bone tissue which subsequently results in the formation of hydroxyapatite (HAp) and a permanent interfacial bond. The success of this particular composition has resulted in a range of commercial materials that can be applied to procedures such as guided bone regeneration (GBR) and to improve resistance to dentin associated hypersensitivity. Glasses can also be applied in a composite form to aid in the restoration of de-mineralized tooth after carie formation, or to fix metal based constructs to the tooth enamel. The predominant types of glass based dental adhesive materials are glass polyalkenoate cements (GPCs). These materials generally consist of a SiO2–Al2O3–CaO/CaF based glass, and when mixed with a polyalkenoic acid (PAA) and water, set to form a solid matrix. GPCs are commonly used as cavity fillers, liners and as luting agents as they form a strong bond to the mineral phase of tooth, have the ability to release fluoride in the oral environment and have appropriate handling and mechanical properties for their intended application.

Keywords

Simulated Body Fluid Root Canal Alveolar Bone Bioactive Glass Dental Pulp 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Nelson, S.J., Ash, M.: Wheelers Dental Anatomy, Physiology, and Occlusion, 9th edn. Elsevier, St. Louis (2010)Google Scholar
  2. 2.
    Scheider, I., Xiao, T., Yilmaz, E., Schneider, G.A., Huber, N., Bargmann, S.: Damage modeling of small-scale experiments on dental enamel with hierarchical microstructure. Acta Biomater. 15, 244–253 (2015)CrossRefGoogle Scholar
  3. 3.
    Jang, A.T., Lin, J.D., Choi, R.M., Choi, E.M., Seto, M.L., Ryder, M.I., Gansky, S.A., Curtis, D.A., Ho, S.P.: Adaptive properties of human cementum and cementum dentin junction with age. J. Mech. Behav. Biomed. Mater. 39, 184–196 (2014)CrossRefGoogle Scholar
  4. 4.
    Bertassoni, L.E., Kury, M., Rathsam, C., Little, C.B., Swain, M.V.: The role of proteoglycans in the nanoindentation creep behavior of human dentin. J. Mech. Behav. Biomed. Mater. 55, 264–270 (2016)CrossRefGoogle Scholar
  5. 5.
    Garces-Ortiz, M., Ledesma-Montes, C., Reyes-Gasga, J.: Scanning electron microscopic study on the fibrillar structures within dentinal tubules of human dentin. J. Endod. 41(9), 1510–1514 (2015)CrossRefGoogle Scholar
  6. 6.
    Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemons, J.E.: Biomaterials Science: An Introduction to Materials in Medicine, 1st edn. Academic Press, London (1996)Google Scholar
  7. 7.
    Hench, L.L.: The story of Bioglass. J. Mater. Sci. Mater. Med. 17, 967–978 (2006)CrossRefGoogle Scholar
  8. 8.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRefGoogle Scholar
  9. 9.
    Heinz, S.A., Paliwal, S., Ivanovski, S.: Mechanisms of bone resorption in periodontitis. J. Immunol. Res. (2015). doi: 10.1155/2015/615486 Google Scholar
  10. 10.
    Henderson, B., Nair, S.P.: Hard labour: bacterial infection of the skeleton. Trends Microbiol. 11(12), 570–577 (2003)CrossRefGoogle Scholar
  11. 11.
    Turkyilmaz, I.: Current Concepts in Dental Implantology. InTechOpen (2015). doi: 10.5772/58668
  12. 12.
    Stanley, H.R., Clark, A.E., Hench, L.L.: Alveolar ridge maintenance implants. In: Hench, L.L., Wilson, J. (eds.) Clinical Performance of Skeletal Prostheses, pp. 255–269. Springer, Dordrecht (1996)Google Scholar
  13. 13.
    Abbasi, Z., Bahrololoom, M.E., Shariat, M.H., Bagheri, R.: Bioactive glasses in dentistry: a review. J. Dent. Biomater. 2(1), 1–9 (2015)Google Scholar
  14. 14.
    Kokubo, T., Kim, H.-M., Kawashita, M.: Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161–2175 (2003)CrossRefGoogle Scholar
  15. 15.
    Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27, 2907–2915 (2006)CrossRefGoogle Scholar
  16. 16.
    Levallois, B., Fovet, Y., Lapeyre, L., Gal, J.Y.: In vitro fluoride release from restorative materials in water versus artificial saliva medium (SAGF). Dent. Mater. 14(6), 441–447 (1998)CrossRefGoogle Scholar
  17. 17.
    Aina, V., Bertinetti, L., Cerrato, G., Cerruti, M., Lusvardi, G., Malavasi, G., Morterra, C., Tacconi, L., Menabue, L.: On the dissolution/reaction of small-grain Bioglass® 45S5 and F-modified bioactive glasses in artificial saliva (AS). Appl. Surf. Sci. 257(9), 4185–4195 (2011)CrossRefGoogle Scholar
  18. 18.
    Gal, J.-Y., Fovet, Y., Myriam, A.-Y.: About a synthetic saliva for in vitro studies. Talanta 53, 1103–1115 (2001)CrossRefGoogle Scholar
  19. 19.
    Shi, D.: Biomaterials and Tissue Engineering. Springer, Berlin (2004)CrossRefGoogle Scholar
  20. 20.
    Lokade, J., Wankhade, S., Chandak, M., Lanjewar, A.: Guided tissue regeneration principle with inserts of Perioglas in endodontic surgery: two case reports. Int. J. Prosthodont. Restor. Surg. 3(2), 72–77 (2013)Google Scholar
  21. 21.
    Bashutski, J.D., Wang, H.-L.: Periodontal and endodontic regeneration. J. Endod. 35(3), 321–328 (2009)CrossRefGoogle Scholar
  22. 22.
    Lin, L., Chen, M.Y.H., Ricucci, D., Rosenberg, P.A.: Guided tissue regeneration in periapical surgery. J. Endod. 36(4), 618–625 (2010)CrossRefGoogle Scholar
  23. 23.
    Scantlebury, T., Ambruster, J.: The development of guided regeneration: making the impossible possible and the unpredictable predictable. J. Evid. Based Dent. Pract. 12(3), 101–117 (2012)CrossRefGoogle Scholar
  24. 24.
    Rams, T.E., Roberts, T.W., Tatum Jr., H., Keyes, P.H.: The subgingival microbial flora associated with human dental implants. J. Prosthet. Dent. 51(4), 529–534 (1984)CrossRefGoogle Scholar
  25. 25.
    Allan, I., Newman, H., Wilson, M.: Antibacterial activity of particulate Bioglass® against supra- and subgingival bacteria. Biomaterials 22(12), 1683–1687 (2001)CrossRefGoogle Scholar
  26. 26.
    Balamurugan, A., Balossier, G., Laurent-Maquin, D., Pina, S., Rebelo, A.H.S., Faure, J., Ferreira, J.M.F.: An in vitro biological and anti-bacterial study on a solgel derived silver-incorporated bioglass system. Dent. Mater. 24(10), 1343–1351 (2008)CrossRefGoogle Scholar
  27. 27.
    Lopez, M.M.M., Faure, J., Cabrera, M.I.E., Garcia, M.E.C.: Structural characterization and electrochemical behavior of 45S5 bioglass coating on Ti6Al4 V alloy for dental applications. Mater. Sci. Eng., C 206, 30–38 (2016)CrossRefGoogle Scholar
  28. 28.
    Jurczyk, K., Kubicka, M.M., Ratajczak, M., Jurczyk, M.U., Niespodziana, K., Nowak, D.M., Gajecka, M., Jurczyk, M.: Antibacterial activity of nanostructured Ti-45S5 bioglass-Ag composite against Streptococcus mutans and Staphylococcus aureus. Trans. Non-Ferr. Metals Soc. China 1, 118–125 (2016)CrossRefGoogle Scholar
  29. 29.
    Rectenwald, J., Minter, R.M., Rosenberg, J.J., Gaines, C.G., Lee, S., Moldawer, L.L.: Bioglass attenuates a proinflammatory response in mouse peritoneal endotoxicosis. Shock 17, 135–138 (2002)CrossRefGoogle Scholar
  30. 30.
    Li, H., He, J., Yu, H., Green, C.R., Chang, J.: Bioglass promotes wound healing by affecting gap junction connexin 43 mediated endothelial cell behavior. Biomaterials 84, 64–75 (2016)CrossRefGoogle Scholar
  31. 31.
    Vollenweider, M., Brunner, T.J., Knecht, S., Grass, R.N., Zehnder, M., Imfeld, T., Stark, W.J.: Remineralization of human dentin using ultrafine bioactive glass particles. Acta Biomater. 3(6), 936–943 (2007)CrossRefGoogle Scholar
  32. 32.
    Curtis, A.R., West, N.X., Su, B.: Synthesis of nanobioglass and formation of apatite rods to occlude exposed dentine tubules and eliminate hypersensitivity. Acta Biomater. 6(9), 3740–3746 (2010)CrossRefGoogle Scholar
  33. 33.
    Farooq, I., Moheet, I.A., AlShwaimi, E.: In vitro dentin tubule occlusion and remineralization competence of various toothpastes. Arch. Oral Biol. 60(9), 1246–1253 (2015)Google Scholar
  34. 34.
    Kumar, A., Singh, S., Thumar, G., Mengji, A.: Bioactive glass nanoparticles (NovaMin®) for applications in dentistry. J. Dent. Med. Sci. 14(8), 30–35 (2015)Google Scholar
  35. 35.
    Wang, S., Gao, X., Gong, W., Zhang, Z., Chen, X., Dong, Y.: Odontogenic differentiation and dentin formation of dental pulp cells under nanobioactive glass induction. Acta Biomater. 10(6), 2792–2803 (2014)CrossRefGoogle Scholar
  36. 36.
    Hench, L.L.: Genetic design of bioactive glass. J. Eur. Ceram. Soc. 29(7), 1257–1265 (2009)CrossRefGoogle Scholar
  37. 37.
    Tyas, M.J., Burrow, M.F.: Adhesive restorative materials: a review. Aust. Dent. J. 49(3), 112–121 (2004)CrossRefGoogle Scholar
  38. 38.
    Wilson, A.D.: Glass Ionomer Cements, Origins, Developments and Future. Quintessence Publishing Co., Chicago (1998)Google Scholar
  39. 39.
    Nicholson, J.W., Wilson, A.D.: Acid-Base Cements: Their Biomedical and Industrial Applications. Chemistry of Solid State Materials, vol. 3. Cambridge University Press, Cambridge (1993)Google Scholar
  40. 40.
    Nicholson, J.W.: Adhesive dental materials: a review. Int. J. Adhes. Adhes. 18(4), 229–236 (1998)CrossRefGoogle Scholar
  41. 41.
    De Barra, E., Hill, R.G.: Influence of alkali metal ions on the fracture properties of glass polyalkenoate (ionomer) cements. Biomaterials 19(6), 495–502 (1998)CrossRefGoogle Scholar
  42. 42.
    Mount, G.J.: An Atlas of Glass-Ionomer Cements: A Clinician’s Guide, 3rd edn. Taylor & Francis, Milton Park (2001)Google Scholar
  43. 43.
    Stamboulis, A., Law, R.V., Hill, R.G.: Characterisation of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR). Biomaterials 25(17), 3907–3913 (2004)CrossRefGoogle Scholar
  44. 44.
    Yildirim, E., Dupree, R.: Investigation of Al–O–Al sites in an Na-alumino-silicate glass. Bull. Mater. Sci. 27(3), 269–272 (2004)CrossRefGoogle Scholar
  45. 45.
    Munhoz, T., Karpukhina, N., Hill, R.G., Law, R.V., De Almeida, L.H.: Setting of commercial glass ionomer cement Fuji IX by 27Al and 19F MAS-NMR. J. Dent. 38(4), 325–330 (2010)CrossRefGoogle Scholar
  46. 46.
    Deb, S., Nicholson, J.W.: The effect of Strontium oxide in glass ionomer cements. J. Mater. Sci. Mater. Med. 10, 471–474 (1999)CrossRefGoogle Scholar
  47. 47.
    Stamboulis, A., Hill, R.G., Law, R.V.: Characterization of the structure of calcium alumino-silicate and calcium fluoro-alumino-silicate glasses by magic angle spinning nuclear magnetic resonance (MAS-NMR). J. Non-Cryst. Solids 333(1), 101–107 (2004)CrossRefGoogle Scholar
  48. 48.
    De Barra, E., Hill, R.G.: Influence of glass composition on the properties of glass polyalkenoate cements. Part III: influence of fluorite content. Biomaterials 21(6), 563–569 (2000)CrossRefGoogle Scholar
  49. 49.
    Yiu, C.K.Y., Tay, F.R., King, N.M., Pashley, D.H., Carvalho, R.M., Carrilho, M.R.O.: Interaction of resin-modified glass-ionomer cements with moist dentine. J. Dent. 32(7), 521–530 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Inamori School of EngineeringAlfred UniversityAlfredUSA

Personalised recommendations