Skip to main content

45S5 Bioglass Based Scaffolds for Skeletal Repair

  • Chapter
  • First Online:
Biocompatible Glasses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

Glass as a material presents significant potential for restoration of bone tissue. Glass can be designed to contain ions that positively influence bone metabolism in addition to stimulating additional pro-healing processes such as angiogenesis. Specifically, Bioglass® (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses), a SiO2–CaO–Na2O–P2O5 glass composition has been extensively studied since it was discovered that this particular composition can bond to bone and soft tissue in vivo. This property in particular led to the development of porous scaffolds that can be utilized to permit the ingrowth of bone and soft tissue, in addition to allowing free movement of host cells and physiological fluids that can further improve the healing rate. Many studies and processing methods have been conducted to optimize Bioglass® scaffolds porosity and interconnectivity in addition to improving some of the limitation such as the mechanical integrity. The diversity of studies that have been conducted on this particular composition greatly supports the potential that glassy materials encompass for scaffold materials applied to skeletal repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Martini, F.R.: Fundamentals of Anatomy and Physiology. Pearson Eductaion International, San Francisco (2006)

    Google Scholar 

  2. Fogelman, I., Gnanasegaran, G., van der Wall, H. (eds.): Radionuclide and Hybrid Bone Imaging. Springer, Berlin (2013)

    Google Scholar 

  3. Kular, J., Tickner, J., Chim, S.M., Xu, J.: An overview of the regulation of bone remodelling at the cellular level. Clin. Biochem. 45, 863–873 (2012)

    Article  Google Scholar 

  4. Faour, O., Dimitriou, R., Cousins, C.A., Giannoudis, P.V.: The use of bone graft substitutes in large cancellous voids: any specific needs? Injury 42, S87–S90 (2011)

    Article  Google Scholar 

  5. Hench, L.L.: The story of bioglass. J. Mater. Sci. Mater. Med. 17, 967–978 (2006)

    Article  Google Scholar 

  6. Hench, L.L.: Genetic design of bioactive glass. J. Eur. Ceram. Soc. 29, 1257–1265 (2009)

    Article  Google Scholar 

  7. Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)

    Article  Google Scholar 

  8. Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)

    Article  Google Scholar 

  9. Haimi, S., Gorianc, G., Moimas, L., Lindroos, B., Huhtala, H., Raty, S., Kuokkanen, H., Sandor, G.K., Schmid, C., Miettinen, S., Suuronen, R.: Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. 5, 3122–3131 (2009)

    Article  Google Scholar 

  10. Vargas, G.E., Mesones, R.V., Bretcanu, O., López, J.M.P., Boccaccini, A.R., Gorustovich, A.: Biocompatibility and bone mineralization potential of 45S5 Bioglass®-derived glass-ceramic scaffolds in chick embryos. Acta Biomater. 5, 374–380 (2009)

    Article  Google Scholar 

  11. Chen, Q.-Z., Rezwan, K., Françon, V., Armitage, D., Nazhat, S.N., Jones, F.H., Boccaccini, A.R.: Surface functionalization of Bioglass®-derived porous scaffolds. Acta Biomater. 3, 551–562 (2007)

    Article  Google Scholar 

  12. Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J.A., Rehman, I.: Effects of incorporation of hydroxyapatite and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater. 4, 432–440 (2008)

    Article  Google Scholar 

  13. Hatton, P.V., Hurrell-Gillingham, K., Reaney, I.M., Miller, C.A., Crawford, A.: Devitrification of ionomer glass and its effect on the in vitro biocompatability of glass ionomer cements. Biomaterials 24, 3153–3160 (2003)

    Article  Google Scholar 

  14. Hatton, P.V., Hurrell-Gillingham, K., Brook, I.M.: Biocompatability of glass ionomer bone cements. J. Dent. 34, 598–601 (2006)

    Article  Google Scholar 

  15. Ravarian, R., Moztarzadeh, F., Hashjin, M.S., Rabiee, S.M., Khoshakhlagh, P., Tahriri, M.: Synthesis, characterization and bioactivity investigation of bioglass/hydroxyapatite composite. Ceram. Int. 36, 291–297 (2010)

    Article  Google Scholar 

  16. Bortot, M.B., Prastalo, S., Prado, M.: Production and characterization of glass microspheres for hepatic cancer treatment. Proced. Mater. Sci. 1, 351–358 (2012)

    Article  Google Scholar 

  17. Anderson, J.H., Goldberg, J.A., Bessent, R.G., Kerr, D.J., McKillop, J.H., Stewart, I., Cooke, T.G., McArdle, C.S.: Glass yttrium-90 microspheres for patients with colorectal liver metastases. Radiother. Oncol. 25, 137–139 (1992)

    Article  Google Scholar 

  18. Rahaman, M.N., Day, D.E., Sonny Bal, B., Fu, Q., Jung, S.B., Bonewald, L.F., Tomsia, A.P.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011)

    Article  Google Scholar 

  19. Shelby, J.E.: Introduction to Glass Science and Technology, 2nd edn. The Royal Socitey of Chemistry, Cambridge (2005)

    Google Scholar 

  20. Clark, D.E., Dilmore, M.F., Ethridge, E.C., Hench, L.L.: Aqueous corrosion of soda-silicate and soda-lime-silicate glass. J. Am. Ceram. Soc. 59, 62–65 (1976)

    Article  Google Scholar 

  21. Serra, J., Gonzalez, P., Liste, S., Chiussi, S., Leon, B., Perez-amor, M., Ylanen, H.O., Hupa, M.: Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J. Mater. Sci. Mater. Med. 13, 1221–1225 (2002)

    Article  Google Scholar 

  22. Paul A.: Chemistry of Glasses. 2nd edn. Chapman and Hall, London (1990)

    Google Scholar 

  23. Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)

    Article  Google Scholar 

  24. Marie, P.J.: Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteoporos. Int. 16, S7–S10 (2005)

    Article  Google Scholar 

  25. Marie, P.J.: Strontium ranelate: new insights into its dual mode of action. Bone 40(1), S5–S8 (2007)

    Article  Google Scholar 

  26. Jones, J.R., Ehrenfried, L.M., Hench, L.L.: Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27, 964–973 (2006)

    Article  Google Scholar 

  27. Bellucci, D., Cannillo, V., Sola, A., Chiellini, F., Gazzarri, M., Migone, C.: Macroporous Bioglass®-derived scaffolds for bone tissue regeneration. Ceram. Int. 37, 1575–1585 (2011)

    Article  Google Scholar 

  28. Wren, A.W., Coughlan, A., Smale, K.E., Misture, S.T., Mahon, B.P., Clarkin, O.M., Towler, M.R.: Fabrication of CaO–NaO–SiO2/TiO2 scaffolds for surgical applications. J. Mater. Sci. Mater. Med. 23, 2881–2891 (2012)

    Article  Google Scholar 

  29. Ochoa, I., Sanz-Herrera, J.A., García-Aznar, J.M., Doblaré, M., Yunos, D.M., Boccaccini, A.R.: Permeability evaluation of 45S5 Bioglass®-based scaffolds for bone tissue engineering. J. Biomech. 42, 257–260 (2009)

    Article  Google Scholar 

  30. Chen, Q.Z., Thompson, I.D., Boccaccini, A.R.: 45S5 Bioglass®-derived glass–ceramic scaffolds for bone tissue engineering. Biomaterials 27, 2414–2425 (2006)

    Article  Google Scholar 

  31. Kokubo, T., Takadama, H.: How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27, 2907–2915 (2006)

    Article  Google Scholar 

  32. Bertolla, L., Dlouhý, I., Boccaccini, A.R.: Preparation and characterization of Bioglass®-based scaffolds reinforced by poly-vinyl alcohol/microfibrillated cellulose composite coating. J. Eur. Ceram. Soc. 34, 3379–3387 (2014)

    Article  Google Scholar 

  33. Fabbri, P., Valentini, L., Hum, J., Detsch, R., Boccaccini, A.R.: 45S5 Bioglass®-derived scaffolds coated with organic–inorganic hybrids containing graphene. Mater. Sci. Eng., C 33, 3592–3600 (2013)

    Article  Google Scholar 

  34. Eqtesadi, S., Motealleh, A., Miranda, P., Pajares, A., Lemos, A., Ferreira, J.M.F.: Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. J. Eur. Ceram. Soc. 34, 107–118 (2014)

    Article  Google Scholar 

  35. Farag, M.M., Rüssel, C.: Glass-ceramic scaffolds derived from Bioglass® and glass with low crystallization affinity for bone regeneration. Mater. Lett. 73, 161–165 (2012)

    Article  Google Scholar 

  36. Francis, L., Meng, D., Knowles, J.C., Roy, I., Boccaccini, A.R.: Multi-functional P(3HB) microsphere/45S5 Bioglass®-based composite scaffolds for bone tissue engineering. Acta Biomater. 6, 2773–2786 (2010)

    Article  Google Scholar 

  37. Gerhardt, L.-C., Widdows, K.L., Erol, M.M., Burch, C.W., Sanz-Herrera, J.A., Ochoa, I., Stampfli, R., Roqan, I.S., Gabe, S., Ansari, T., Boccaccini, A.R.: The pro-angiogenic properties of multi-functional bioactive glass composite scaffolds. Biomaterials 32, 4096–4108 (2011)

    Article  Google Scholar 

  38. Kent Leach, J., Kaigler, D., Wang, Z., Krebsbach, P.H., Mooney, D.J.: Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27, 3249–3255 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. Wren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wren, A.W. (2016). 45S5 Bioglass Based Scaffolds for Skeletal Repair. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_7

Download citation

Publish with us

Policies and ethics