Bioactive Glasses: Advancing from Micro to Nano and Its Potential Application

Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)

Abstract

Bioactive glasses or bioglasses in short (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) have attracted much attention in application for bone regeneration since 1970s. With the development of the preparation strategies from conventional quenching to modified sol–gel methods, bioglasses of different structures and varied compositions have been reported as their physicochemical and biological properties being well-studied. Mesoporous bioglasses, which possessed unique mesopore channels for drug delivery, has become a hotspot in the last decade. In this chapter, the fabrication of bioglasses including porous scaffolds, coatings, fibers and particles especially the development of its nanoscale form, and several bioglasses involved composite materials are discussed. Recent studies on therapeutic ion substitution (e.g. Sr, Co) of bioglasses and their biological properties both in vivo and in vitro are mentioned. The potential application of bioglasses in different forms for the hard tissue engineering (e.g. dental implantation, bone regeneration), and some recent reports on soft tissue engineering (e.g. would healing) are also referred to. As one of the most promising candidate for bone/soft tissue regeneration application, both the great chances and challenges, and the potential direction of bioglasses for its development are summarized.

Keywords

Simulated Body Fluid Bioactive Glass Porous Scaffold Bioactive Glass Apatite Formation Ability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hench, L.L.: Bioceramics—from concept to clinic. Am. Ceram. Soc. Bull. 72, 93–98 (1993)Google Scholar
  2. 2.
    Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)CrossRefGoogle Scholar
  3. 3.
    Hench, L.L., Polak, J.M.: Third-generation biomedical materials. Science 295, 1014–1017 (2002)CrossRefGoogle Scholar
  4. 4.
    Kaur, G., Pandey, O.P., Singh, K., Homa, D., Scott, B., Pickrell, G.: A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. Part A 102, 254–274 (2014)CrossRefGoogle Scholar
  5. 5.
    Hench, L., Hench, J.W., Greenspan, D.: Bioglass: a short history and bibliography. J. Australas. Ceram. Soc. 40, 1–42 (2004)Google Scholar
  6. 6.
    Rahaman, M.N., Day, D.E., Bal, B.S., Fu, Q., Jung, S.B., Bonewald, L.F., Tomsia, A.P.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011)CrossRefGoogle Scholar
  7. 7.
    Pantano, C.G., Clark, A.E., Hench, L.L.: Multilayer corrosion films on bioglass surfaces. J. Am. Ceram. Soc. 57, 412–413 (1974)CrossRefGoogle Scholar
  8. 8.
    Wu, C.T., Chang, J.: Silicate bioceramics for bone tissue regeneration. J. Inorg. Mater. 28, 29–39 (2013)CrossRefGoogle Scholar
  9. 9.
    Brink, M.: The influence of alkali and alkaline earths on the working range for bioactive glasses. J. Biomed. Mater. Res. 36, 109–117 (1997)CrossRefGoogle Scholar
  10. 10.
    Liang, W., Rahaman, M.N., Day, D.E., Marion, N.W., Riley, G.C., Mao, J.J.: Bioactive borate glass scaffold for bone tissue engineering. J. Non-Cryst. Solids 354, 1690–1696 (2008)CrossRefGoogle Scholar
  11. 11.
    Fu, H., Fu, Q., Zhou, N., Huang, W., Rahaman, M.N., Wang, D., Liu, X.: In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater. Sci. Eng. C Mater. Biol. Appl. 29, 2275–2281 (2009)CrossRefGoogle Scholar
  12. 12.
    Haro Durand, L.A., Vargas, G.E., Romero, N.M., Vera-Mesones, R., Porto-Lopez, J.M., Boccaccini, A.R., Zago, M.P., Baldi, A., Gorustovich, A.: Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J. Mater. Chem. B 3, 1142–1148 (2015)CrossRefGoogle Scholar
  13. 13.
    Zhao, S., Wang, H., Zhang, Y., Huang, W., Rahaman, M.N., Liu, Z., Wang, D., Zhang, C.: Copper-doped borosilicate bioactive glass scaffolds with improved angiogenic and osteogenic capacity for repairing osseous defects. Acta Biomater. 14, 185–196 (2015)CrossRefGoogle Scholar
  14. 14.
    Gao, H.S., Tan, T.N., Wang, D.H.: Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J. Control. Release 96, 29–36 (2004)CrossRefGoogle Scholar
  15. 15.
    Brink, M., Turunen, T., Happonen, R.P., YliUrpo, A.: Compositional dependence of bioactivity of glasses in the system Na2O–K2O–MgO–CaO–B2O3–P2O5–SiO2. J. Biomed. Mater. Res. 37, 114–121 (1997)CrossRefGoogle Scholar
  16. 16.
    Lin, S., Ionescu, C., Pike, K.J., Smith, M.E., Jones, J.R.: Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J. Mater. Chem. 19, 1276–1282 (2009)CrossRefGoogle Scholar
  17. 17.
    Vedel, E., Arstila, H., Ylanen, H., Hupa, L., Hupa, M.: Predicting physical and chemical properties of bioactive glasses from chemical composition. Part 1: viscosity characteristics. Glass Technol. Eur. J. Glass Sci. Technol. Part A 49, 251–259 (2008)Google Scholar
  18. 18.
    O’Donnell, M.D.: Predicting bioactive glass properties from the molecular chemical composition: glass transition temperature. Acta Biomater. 7, 2264–2269 (2011)CrossRefGoogle Scholar
  19. 19.
    Zhao, D.Y., Feng, J.L., Huo, Q.S., Melosh, N., Fredrickson, G.H., Chmelka, B.F., Stucky, G.D.: Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998)CrossRefGoogle Scholar
  20. 20.
    Mamaeva, V., Sahlgren, C., Linden, M.: Mesoporous silica nanoparticles in medicine—recent advances. Adv. Drug Deliv. Rev. 65, 689–702 (2013)CrossRefGoogle Scholar
  21. 21.
    Slowing, I., Viveroescoto, J., Wu, C., Lin, V.: Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)CrossRefGoogle Scholar
  22. 22.
    Henstock, J.R., Canham, L.T., Anderson, S.I.: Silicon: the evolution of its use in biomaterials. Acta Biomater. 11, 17–26 (2015)CrossRefGoogle Scholar
  23. 23.
    Groh, D., Doehler, F., Brauer, D.S.: Bioactive glasses with improved processing. Part 1. Thermal properties, ion release and apatite formation. Acta Biomater. 10, 4465–4473 (2014)CrossRefGoogle Scholar
  24. 24.
    Beck Jr., G.R., Ha, S.-W., Camalier, C.E., Yamaguchi, M., Li, Y., Lee, J.-K., Weitzmann, M.N.: Bioactive silica-based nanoparticles stimulate bone-forming osteoblasts, suppress bone-resorbing osteoclasts, and enhance bone mineral density in vivo. Nanomed. Nanotechnol. Biol. Med. 8, 793–803 (2012)CrossRefGoogle Scholar
  25. 25.
    Vallet-Regi, M., Colilla, M., Izquierdo-Barba, I.: Bioactive mesoporous silicas as controlled delivery systems: application in bone tissue regeneration. J. Biomed. Nanotechnol. 4, 1–15 (2008)Google Scholar
  26. 26.
    Hum, J., Boccaccini, A.: Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review. J. Mater. Sci. Mater. Med. 23, 2317–2333 (2012)CrossRefGoogle Scholar
  27. 27.
    Vallet-Regi, M., Ramila, A., Del Real, R., Pérez-Pariente, J.: A new property of MCM-41: drug delivery system. Chem. Mater. 13, 308–311 (2001)CrossRefGoogle Scholar
  28. 28.
    Vallet-Regi, M., Izquierdo-Barba, I., Colilla, M.: Structure and functionalization of mesoporous bioceramics for bone tissue regeneration and local drug delivery. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370, 1400–1421 (2012)CrossRefGoogle Scholar
  29. 29.
    Yan, X., Yu, C., Zhou, X., Tang, J., Zhao, D.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. 43, 5980–5984 (2004)CrossRefGoogle Scholar
  30. 30.
    Hench, L.L.: The story of bioglass (R). J. Mater. Sci. Mater. Med. 17, 967–978 (2006)CrossRefGoogle Scholar
  31. 31.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRefGoogle Scholar
  32. 32.
    Sepulveda, P., Jones, J.R., Hench, L.L.: Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J. Biomed. Mater. Res. 58, 734–740 (2001)CrossRefGoogle Scholar
  33. 33.
    Siqueira, R.L., Peitl, O., Zanotto, E.D.: Gel-derived SiO2–CaO–Na2O–P2O5 bioactive powders: synthesis and in vitro bioactivity. Mater. Sci. Eng. C Mater. Biol. Appl. 31, 983–991 (2011)CrossRefGoogle Scholar
  34. 34.
    Letaief, N., Lucas-Girot, A., Oudadesse, H., Dorbez-Sridi, R.: New 92S6 mesoporous glass: influence of surfactant carbon chain length on the structure, pore morphology and bioactivity. Mater. Res. Bull. 60, 882–889 (2014)CrossRefGoogle Scholar
  35. 35.
    Yan, X.X., Yu, C.Z., Zhou, X.F., Tang, J.W., Zhao, D.Y.: Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. 43, 5980–5984 (2004)CrossRefGoogle Scholar
  36. 36.
    Lovelace, T.B., Mellonig, J.T., Meffert, R.M., Jones, A.A., Nummikoski, P.V., Cochran, D.L.: Clinical evaluation of bioactive glass in the treatment of periodontal osseous defects in humans. J. Periodontol. 69, 1027–1035 (1998)CrossRefGoogle Scholar
  37. 37.
    Mengel, R., Soffner, M., Flores-De-Jacoby, L.: Bioabsorbable membrane and bioactive glass in the treatment of intrabony defects in patients with generalized aggressive periodontitis: Results of a 12-month clinical and radiological study. J. Periodontol. 74, 899–908 (2003)CrossRefGoogle Scholar
  38. 38.
    Low, S.B., King, C.J., Krieger, J.: An evaluation of bioactive ceramic in the treatment of periodontal osseous defects. Int. J. Periodontics Restor. Dent. 17, 358–367 (1997)Google Scholar
  39. 39.
    Schopper, C., Ziya-Ghazvini, F., Goriwoda, W., Moser, D., Wanschitz, F., Spassova, E., Lagogiannis, G., Auterith, A., Ewers, R.: HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation—a long-term histological study. J. Biomed. Mater. Res. Part B Appl. Biomater. 74B, 458–467 (2005)CrossRefGoogle Scholar
  40. 40.
    Peters, F., Reif, D.: Functional materials for bone regeneration from beta-tricalcium phosphate. Materialwiss. Werkstofftech. 35, 203–207 (2004)CrossRefGoogle Scholar
  41. 41.
    Leong, K.F., Cheah, C.M., Chua, C.K.: Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24, 2363–2378 (2003)CrossRefGoogle Scholar
  42. 42.
    Sachlos, E., Czernuszka, J.T.: Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cells Mater. 5, 29–39 (2003). (discussion 39–40)Google Scholar
  43. 43.
    Liu, C.Z., Czernuszka, J.T.: Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology. Mater. Sci. Technol. 23, 379–391 (2007)CrossRefGoogle Scholar
  44. 44.
    Wu, C., Luo, Y., Cuniberti, G., Xiao, Y., Gelinsky, M.: Three-dimensional printing of hierarchical and tough mesoporous bioactive glass scaffolds with a controllable pore architecture, excellent mechanical strength and mineralization ability. Acta Biomater. 7, 2644–2650 (2011)CrossRefGoogle Scholar
  45. 45.
    Sepulveda, P., Jones, J.R., Hench, L.L.: Bioactive sol–gel foams for tissue repair. J. Biomed. Mater. Res. 59, 340–348 (2002)CrossRefGoogle Scholar
  46. 46.
    Jones, J.R., Lin, S., Yue, S., Lee, P.D., Hanna, J.V., Smith, M.E., Newport, R.J.: Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 224, 1373–1387 (2010)CrossRefGoogle Scholar
  47. 47.
    Yun, H.-S., Kim, S.-E., Hyun, Y.-T., Heo, S.-J., Shin, J.-W.: Hierarchically mesoporous–macroporous bioactive glasses scaffolds for bone tissue regeneration. J. Biomed. Mater. Res. Part B Appl. Biomater. 87B, 374–380 (2008)CrossRefGoogle Scholar
  48. 48.
    Wu, C., Zhou, Y., Chang, J., Xiao, Y.: Delivery of dimethyloxallyl glycine in mesoporous bioactive glass scaffolds to improve angiogenesis and osteogenesis of human bone marrow stromal cells. Acta Biomater. 9, 9159–9168 (2013)CrossRefGoogle Scholar
  49. 49.
    Huang, K., Cai, S., Xu, G., Ren, M., Wang, X., Zhang, R., Niu, S., Zhao, H.: Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior. Surf. Coat. Technol. 240, 137–144 (2014)CrossRefGoogle Scholar
  50. 50.
    Li, H., Chen, S., Wu, Y., Jiang, J., Ge, Y., Gao, K., Zhang, P., Wu, L.: Enhancement of the osseointegration of a polyethylene terephthalate artificial ligament graft in a bone tunnel using 58S bioglass. Int. Orthop. 36, 191–197 (2012)CrossRefGoogle Scholar
  51. 51.
    Monsalve, M., Lopez, E., Ageorges, H., Vargas, F.: Bioactivity and mechanical properties of bioactive glass coatings fabricated by flame spraying. Surf. Coat. Technol. 268, 142–146 (2015)CrossRefGoogle Scholar
  52. 52.
    Wang, X., Wen, C.: Corrosion protection of mesoporous bioactive glass coating on biodegradable magnesium. Appl. Surf. Sci. 303, 196–204 (2014)CrossRefGoogle Scholar
  53. 53.
    Fiorilli, S., Baino, F., Cauda, V., Crepaldi, M., Vitale-Brovarone, C., Demarchi, D., Onida, B.: Electrophoretic deposition of mesoporous bioactive glass on glass-ceramic foam scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 26, 1–2 (2015)CrossRefGoogle Scholar
  54. 54.
    Tan, F., Naciri, M., Al-Rubeai, M.: Osteoconductivity and growth factor production by MG63 osteoblastic cells on bioglass-coated orthopedic implants. Biotechnol. Bioeng. 108, 454–464 (2011)CrossRefGoogle Scholar
  55. 55.
    Xu, C.Y., Inai, R., Kotaki, M., Ramakrishna, S.: Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10, 1160–1168 (2004)CrossRefGoogle Scholar
  56. 56.
    Clupper, D.C., Gough, J.E., Hall, M.M., Clare, A.G., LaCourse, W.C., Hench, L.L.: In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. J. Biomed. Mater. Res., Part A 67A, 285–294 (2003)CrossRefGoogle Scholar
  57. 57.
    Hsu, F.-Y., Weng, R.-C., Lin, H.-M., Lin, Y.-H., Lu, M.-R., Yu, J.-L., Hsu, H.-W.: A biomimetic extracellular matrix composed of mesoporous bioactive glass as a bone graft material. Microporous Mesoporous Mater. 212, 56–65 (2015)CrossRefGoogle Scholar
  58. 58.
    Quintero, F., Pou, J., Comesana, R., Lusquinos, F., Riveiro, A., Mann, A.B., Hill, R.G., Wu, Z.Y., Jones, J.R.: Laser spinning of bioactive glass nanofibers. Adv. Funct. Mater. 19, 3084–3090 (2009)CrossRefGoogle Scholar
  59. 59.
    Walmsley, G.G., McArdle, A., Tevlin, R., Momeni, A., Atashroo, D., Hu, M.S., Feroze, A.H., Wong, V.W., Lorenz, P.H., Longaker, M.T., Wan, D.C.: Nanotechnology in bone tissue engineering. Nanomed. Nanotechnol. Biol. Med. 11, 1253–1263 (2015)CrossRefGoogle Scholar
  60. 60.
    Tran, N., Webster, T.J.: Nanotechnology for bone materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 336–351 (2009)CrossRefGoogle Scholar
  61. 61.
    Yousefi, A.-M., Oudadesse, H., Akbarzadeh, R., Wers, E., Lucas-Girot, A.: Physical and biological characteristics of nanohydroxyapatite and bioactive glasses used for bone tissue engineering. Nanotechnol. Rev. 3, 527–552 (2014)CrossRefGoogle Scholar
  62. 62.
    Yang, Q., Sui, G., Shi, Y.Z., Duan, S., Bao, J.Q., Cai, Q., Yang, X.P.: Osteocompatibility characterization of polyacrylonitrile carbon nanofibers containing bioactive glass nanoparticles. Carbon 56, 288–295 (2013)CrossRefGoogle Scholar
  63. 63.
    Wang, H., Leeuwenburgh, S.C.G., Li, Y., Jansen, J.A.: The use of micro- and nanospheres as functional components for bone tissue regeneration. Tissue Eng. Part B Rev. 18, 24–39 (2012)CrossRefGoogle Scholar
  64. 64.
    Yang, L., Webster, T.J.: Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin. Drug Deliv. 6, 851–864 (2009)CrossRefGoogle Scholar
  65. 65.
    Wu, C., Fan, W., Chang, J.: Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells. J. Mater. Chem. B 1, 2710 (2013)CrossRefGoogle Scholar
  66. 66.
    Liang, Q., Hu, Q., Miao, G., Yuan, B., Chen, X.: A facile synthesis of novel mesoporous bioactive glass nanoparticles with various morphologies and tunable mesostructure by sacrificial liquid template method. Mater. Lett. 148, 45–49 (2015)CrossRefGoogle Scholar
  67. 67.
    Wu, C., Chang, J.: A review of bioactive silicate ceramics. Biomed. Mater. 8, 032001 (2013)CrossRefGoogle Scholar
  68. 68.
    Clark, A.E., Pantano, C.G., Hench, L.L.: Auger spectroscopic analysis of bioglass corrosion films. J. Am. Ceram. Soc. 59, 37–39 (1976)CrossRefGoogle Scholar
  69. 69.
    Kasemo, B., Gold, J.: Implant surfaces and interface processes. Adv. Dent. Res. 13, 8–20 (1999)CrossRefGoogle Scholar
  70. 70.
    Jiang, P., Lin, H., Xing, R., Jiang, J., Qu, F.: Synthesis of multifunctional macroporous-mesoporous TiO2-bioglasses for bone tissue engineering. J. Sol-Gel. Sci. Technol. 61, 421–428 (2012)CrossRefGoogle Scholar
  71. 71.
    Lin, K., Liu, P., Wei, L., Zou, Z., Zhang, W., Qian, Y., Shen, Y., Chang, J.: Strontium substituted hydroxyapatite porous microspheres: surfactant-free hydrothermal synthesis, enhanced biological response and sustained drug release. Chem. Eng. J. 222, 49–59 (2013)CrossRefGoogle Scholar
  72. 72.
    Wu, C., Zhou, Y., Xu, M., Han, P., Chen, L., Chang, J., Xiao, Y.: Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34, 422–433 (2013)CrossRefGoogle Scholar
  73. 73.
    Wu, C., Zhou, Y., Fan, W., Han, P., Chang, J., Yuen, J., Zhang, M., Xiao, Y.: Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33, 2076–2085 (2012)CrossRefGoogle Scholar
  74. 74.
    Zhao, S., Zhang, J., Zhu, M., Zhang, Y., Liu, Z., Tao, C., Zhu, Y., Zhang, C.: Three-dimensional printed strontium-containing mesoporous bioactive glass scaffolds for repairing rat critical-sized calvarial defects. Acta Biomater. 12, 270–280 (2015)CrossRefGoogle Scholar
  75. 75.
    Nielsen, S.P.: The biological role of strontium. Bone 35, 583–588 (2004)CrossRefGoogle Scholar
  76. 76.
    Isaac, J., Nohra, J., Lao, J., Jallot, E., Nedelec, J.-M., Berdal, A., Sautier, J.-M.: Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cells Mater. 21, 130–143 (2011)Google Scholar
  77. 77.
    Wu, C., Chang, J.: Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release 193, 282–295 (2014)CrossRefGoogle Scholar
  78. 78.
    Choe, H., Narayanan, A.S., Gandhi, D.A., Weinberg, A., Marcus, R.E., Lee, Z., Bonomo, R.A., Greenfield, E.M.: Immunomodulatory peptide IDR-1018 decreases implant infection and preserves osseointegration. Clin. Orthop. Relat. Res. 473, 2898–2907 (2015)CrossRefGoogle Scholar
  79. 79.
    Balamurugan, A., Balossier, G., Laurent-Maquin, D., Pina, S., Rebelo, A.H.S., Faure, J., Ferreira, J.M.F.: An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent. Mater. 24, 1343–1351 (2008)CrossRefGoogle Scholar
  80. 80.
    Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)CrossRefGoogle Scholar
  81. 81.
    Yao, Q., Nooeaid, P., Detsch, R., Roether, J.A., Dong, Y., Goudouri, O.-M., Schubert, D.W., Boccaccini, A.R.: Bioglass®/chitosan-polycaprolactone bilayered composite scaffolds intended for osteochondral tissue engineering. J. Biomed. Mater. Res. Part A (2014). doi: 10.1002/jbm.a.35125 Google Scholar
  82. 82.
    Helen, W., Gough, J.E.: Cell viability, proliferation and extracellular matrix production of human annulus fibrosus cells cultured within PDLLA/Bioglass® composite foam scaffolds in vitro. Acta Biomater. 4, 230–243 (2008)CrossRefGoogle Scholar
  83. 83.
    Zeimaran, E., Pourshahrestani, S., Djordjevic, I., Pingguan-Murphy, B., Kadri, N.A., Towler, M.R.: Bioactive glass reinforced elastomer composites for skeletal regeneration: a review. Mater. Sci. Eng. C 53, 175–188 (2015)CrossRefGoogle Scholar
  84. 84.
    Moritz, M., Geszke-Moritz, M.: Mesoporous materials as multifunctional tools in biosciences: principles and applications. Mat. Sci. Eng. C Mater. Biol. Appl. 49, 114–151 (2015)CrossRefGoogle Scholar
  85. 85.
    Bretcanu, O., Boccaccini, A.R., Salih, V.: Poly-dl-lactic acid coated Bioglass® scaffolds: toughening effects and osteosarcoma cell proliferation. J. Mater. Sci. 47, 5661–5672 (2012)CrossRefGoogle Scholar
  86. 86.
    Wu, J., Xue, K., Li, H., Sun, J., Liu, K.: Improvement of PHBV scaffolds with bioglass for cartilage tissue engineering. PLoS ONE 8, e71563 (2013)CrossRefGoogle Scholar
  87. 87.
    Yao, Q., Nooeaid, P., Roether, J.A., Dong, Y., Zhang, Q., Boccaccini, A.R.: Bioglass®—based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram. Int. 39, 7517–7522 (2013)CrossRefGoogle Scholar
  88. 88.
    Bellucci, D., Sola, A., Anesi, A., Salvatori, R., Chiarini, L., Cannillo, V.: Bioactive glass/hydroxyapatite composites: mechanical properties and biological evaluation. Mater. Sci. Eng. C 51, 196–205 (2015)CrossRefGoogle Scholar
  89. 89.
    Chen, Y., Chen, H., Shi, J.: In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater. 25, 3144–3176 (2013)CrossRefGoogle Scholar
  90. 90.
    Zhao, Y.N., Trewyn, B.G., Slowing, I.I., Lin, V.S.Y.: Mesoporous silica nanoparticle-based double drug delivery system for glucose-responsive controlled release of insulin and cyclic AMP. J. Am. Chem. Soc. 131, 8398–8400 (2009)CrossRefGoogle Scholar
  91. 91.
    Slowing, I.I., Vivero-Escoto, J.L., Wu, C.W., Lin, V.S.Y.: Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev. 60, 1278–1288 (2008)CrossRefGoogle Scholar
  92. 92.
    Neumann, A., Christel, A., Kasper, C., Behrens, P.: BMP2-loaded nanoporous silica nanoparticles promote osteogenic differentiation of human mesenchymal stem cells. RSC Adv. 3, 24222 (2013)CrossRefGoogle Scholar
  93. 93.
    Zhu, Y., Kaskel, S.: Comparison of the in vitro bioactivity and drug release property of mesoporous bioactive glasses (MBGs) and bioactive glasses (BGs) scaffolds. Microporous Mesoporous Mater. 118, 176–182 (2009)CrossRefGoogle Scholar
  94. 94.
    Ding, H., Gao, Y.-S., Wang, Y., Hu, C., Sun, Y., Zhang, C.: Dimethyloxaloylglycine increases the bone healing capacity of adipose-derived stem cells by promoting osteogenic differentiation and angiogenic potential. Stem Cells Dev. 23, 990–1000 (2014)CrossRefGoogle Scholar
  95. 95.
    Weidemann, A., Johnson, R.S.: Biology of HIF-1 alpha. Cell Death Differ. 15, 621–627 (2008)CrossRefGoogle Scholar
  96. 96.
    Kang, M.S., Kim, J.-H., Singh, R.K., Jang, J.-H., Kim, H.-W.: Therapeutic-designed electrospun bone scaffolds: mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater. 16, 103–116 (2015)CrossRefGoogle Scholar
  97. 97.
    Izquierdo-Barba, I., Colilla, M., Vallet-Regí, M.: Nanostructured mesoporous silicas for bone tissue regeneration. J. Nanomater. 2008, 1–14 (2008)CrossRefGoogle Scholar
  98. 98.
    Matsuura, N., Gorelikov, I., Williams, R., Wan, K., Zhu, S., Booth, J., Burns, P., Hynynen, K., Rowlands, J.A.: Nanoparticle-tagged perfluorocarbon droplets for medical imaging. In: Shastri, V.P., Lendlein, A., Liu, L., Mikos, A., Mitragotri, S. (eds.) Advances in Material Design for Regenerative Medicine, Drug Delivery and Targeting/Imaging, pp 87–92 (2009)Google Scholar
  99. 99.
    Kim, Y.-T., Caldwell, J.-M., Bellamkonda, R.V.: Nanoparticle-mediated local delivery of methylprednisolone after spinal cord injury. Biomaterials 30, 2582–2590 (2009)CrossRefGoogle Scholar
  100. 100.
    Cejudo-Guillen, M., Ramiro-Gutierrez, M.L., Labrador-Garrido, A., Diaz-Cuenca, A., Pozo, D.: Nanoporous silica microparticle interaction with toll-like receptor agonists in macrophages. Acta Biomater. 8, 4295–4303 (2012)CrossRefGoogle Scholar
  101. 101.
    Tautzenberger, A., Kovtun, A.: Ignatius Nanoparticles and their potential for application in bone. Int. J. Nanomed. 7, 4545 (2012). doi: 10.2147/ijn.s34127 CrossRefGoogle Scholar
  102. 102.
    Ma, Z., Ji, H., Hu, X., Teng, Y., Zhao, G., Mo, L., Zhao, X., Chen, W., Qiu, J., Zhang, M.: Investigation of bioactivity and cell effects of nano-porous sol–gel derived bioactive glass film. Appl. Surf. Sci. 284, 738–744 (2013)CrossRefGoogle Scholar
  103. 103.
    Li, Y., Li, B., Xu, G., Ahmad, Z., Ren, Z., Dong, Y., Li, X., Weng, W., Han, G.: A feasible approach toward bioactive glass nanofibers with tunable protein release kinetics for bone scaffolds. Colloids Surf., B 122, 785–791 (2014)CrossRefGoogle Scholar
  104. 104.
    Bi, L., Jung, S., Day, D., Neidig, K., Dusevich, V., Eick, D., Bonewald, L.: Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J. Biomed. Mater. Res. Part A 100, 3267–3275 (2012)CrossRefGoogle Scholar
  105. 105.
    Zhang, Y., Wei, L., Chang, J., Miron, R.J., Shi, B., Yi, S., Wu, C.: Strontium-incorporated mesoporous bioactive glass scaffolds stimulating in vitro proliferation and differentiation of bone marrow stromal cells and in vivo regeneration of osteoporotic bone defects. J. Mater. Chem. B 1, 5711 (2013)CrossRefGoogle Scholar
  106. 106.
    Miguez-Pacheco, V., Hench, L.L., Boccaccini, A.R.: Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13, 1–15 (2015)CrossRefGoogle Scholar
  107. 107.
    Suzuki, O., Bishop, A.T., Sunagawa, T., Katsube, K., Friedrich, P.F.: VEGF-promoted surgical angiogenesis in necrotic bone. Microsurgery 24, 85–91 (2004)CrossRefGoogle Scholar
  108. 108.
    Day, R.M.: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 11, 768–777 (2005)CrossRefGoogle Scholar
  109. 109.
    Peltola, T., Jokinen, M., Rahiala, H., Levanen, E., Rosenholm, J.B., Kangasniemi, I., Yli-Urpo, A.: Calcium phosphate formation on porous sol–gel-derived SiO2 and CaO–P2O5–SiO2 substrates in vitro. J. Biomed. Mater. Res. 44, 12–21 (1999)CrossRefGoogle Scholar
  110. 110.
    Dai, C., Yuan, Y., Liu, C., Wei, J., Hong, H., Li, X., Pan, X.: Degradable, antibacterial silver exchanged mesoporous silica spheres for hemorrhage control. Biomaterials 30, 5364–5375 (2009)CrossRefGoogle Scholar
  111. 111.
    Lin, C., Mao, C., Zhang, J., Li, Y., Chen, X.: Healing effect of bioactive glass ointment on full-thickness skin wounds. Biomed. Mater. 7, 045017 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations