Skip to main content

What Can We Learn from Atomistic Simulations of Bioactive Glasses?

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

In the last decades, most experimental efforts have been devoted to design bioactive glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) with enhanced biological and mechanical properties by adding specific ions to known bioactive compositions. Concurrently, computational research has been focused to the understanding of the relationships between bioactivity and composition by rationalization of the role of the doping ions. Thus, a deep knowledge of the structural organization of the constituent atoms of the bioactive glasses has been gained by the employment of ab initio and classical molecular dynamics simulations techniques. This chapter reviews the recent successes in this field by presenting, in a concise way, the structure–properties relationships of silicate, phospho-silicate and phosphate glasses with potential bioactive properties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)

    Article  Google Scholar 

  2. Brauer, D.S.: Bioactive glasses—structure and properties. Angew. Chem. Int. Ed. 54, 4160–4181 (2015)

    Article  Google Scholar 

  3. Hench, L.L.: Bioceramics. J. Am. Ceram. Soc. 81, 1705–1728 (1998)

    Article  Google Scholar 

  4. Martin, R.A., Yue, S., Hanna, J.V., Lee, P.D., Newport, R.J., Smith, M.E., et al.: Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1422–1443 (2012)

    Article  Google Scholar 

  5. Pedone, A.: Properties calculations of silica-based glasses by atomistic simulations techniques: a review. J. Phys. Chem. C 113, 20773–20784 (2009)

    Article  Google Scholar 

  6. Malavasi, G., Menziani, M.C., Pedone, A., Civalleri, B., Corno, M., Ugliengo, P.: A computational multiscale strategy to the study of amorphous materials. Theor. Chem. Acc. 117, 933–942 (2007)

    Article  Google Scholar 

  7. Malavasi, G., Pedone, A., Menziani, M.C.: Towards a quantitative rationalization of multicomponent glass properties by means of molecular dynamics simulations. Mol. Simul. 32, 1045–1055 (2006)

    Article  Google Scholar 

  8. Pedone, A., Menziani, M.C.: Computational modeling of silicate glasses: a quantitative structure–property relationship perspective. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S. (eds.) Molecular Dynamic Simulation of Disordered Materials [Internet], pp. 113–35. Springer, New York (2015) [cited 2015 Aug 24]. http://link.springer.com/chapter/10.1007/978-3-319-15675-0_5

    Google Scholar 

  9. Tilocca, A.: Rationalizing the biodegradation of glasses for biomedical applications through classical and ab-initio simulations. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S. (eds.) Molecular Dynamic Simulation of Disordered Materials [Internet]. Springer, New York, pp. 255–273 (2015) [cited 2015 Aug 24]. http://link.springer.com/chapter/10.1007/978-3-319-15675-0_10

    Google Scholar 

  10. Tilocca, A.: Current challenges in atomistic simulations of glasses for biomedical applications. Phys. Chem. Chem. Phys. 16, 3874–3880 (2014)

    Article  Google Scholar 

  11. Du, J.: Challenges in molecular dynamics simulations of multicomponent oxide glasses. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S. (eds.) Molecular Dynamic Simulation of Disordered Materials [Internet]. Springer, New York, pp. 157–180 (2015) [cited 2015 Aug 24]. http://link.springer.com/chapter/10.1007/978-3-319-15675-0_7

    Google Scholar 

  12. Tilocca, A.: Structural models of bioactive glasses from molecular dynamics simulations. In: Proceeding of the Royal Society of London A Mathematical, Physical and Engineering Sciences (2009). rspa.2008.0462

    Google Scholar 

  13. Cormack, A.N., Tilocca, A.: Structure and biological activity of glasses and ceramics. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1271–1280 (2012)

    Article  Google Scholar 

  14. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)

    Google Scholar 

  15. Pedone, A., Corno, M., Civalleri, B., Malavasi, G., Menziani, M.C., Segre, U., et al.: An ab initio parameterized interatomic force field for hydroxyapatite. J. Mater. Chem. 17, 2061–2068 (2007)

    Article  Google Scholar 

  16. Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., Segre, U.: A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006)

    Article  Google Scholar 

  17. Tilocca, A., de Leeuw, N.H., Cormack, A.N.: Shell-model molecular dynamics calculations of modified silicate glasses. Phys. Rev. B. 73, 104209 (2006)

    Article  Google Scholar 

  18. Tilocca, A.: Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J. Chem. Phys. 129, 084504 (2008)

    Article  Google Scholar 

  19. Yu, H., van Gunsteren, W.F.: Accounting for polarization in molecular simulation. Comput. Phys. Commun. 172, 69–85 (2005)

    Article  Google Scholar 

  20. Ispas, S., Benoit, M., Jund, P., Jullien, R.: Structural and electronic properties of the sodium tetrasilicate glass Na2Si4O9 from classical and ab initio molecular dynamics simulations. Phys. Rev. B 64, 214206 (2001)

    Article  Google Scholar 

  21. Tilocca, A., de Leeuw, N.H.: Structural and electronic properties of modified sodium and soda-lime silicate glasses by Car-Parrinello molecular dynamics. J. Mater. Chem. 16, 1950–1955 (2006)

    Article  Google Scholar 

  22. Tilocca, A., de Leeuw, N.H.: Ab initio molecular dynamics study of 45S5 bioactive silicate glass. J. Phys. Chem. B 110, 25810–25816 (2006)

    Article  Google Scholar 

  23. Corno, M., Pedone, A., Dovesi, R., Ugliengo, P.: B3LYP simulation of the full vibrational spectrum of 45S5 bioactive silicate glass compared to nu-silica. Chem. Mater. 20, 5610–5621 (2008)

    Article  Google Scholar 

  24. Corno, M., Pedone, A.: Vibrational features of phospho-silicate glasses: Periodic B3LYP simulations. Chem. Phys. Lett. 476, 218–222 (2009)

    Article  Google Scholar 

  25. Pedone, A., Charpentier, T., Malavasi, G., Menziani, M.C.: New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010)

    Article  Google Scholar 

  26. Charpentier, T., Menziani, M.C., Pedone, A.: Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. Rsc Adv. 3, 10550–10578 (2013)

    Article  Google Scholar 

  27. Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19, 95–103 (2007)

    Article  Google Scholar 

  28. Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The formation of nanoscale structures in soluble phosphosilicate glasses for biomedical applications: MD simulations. Faraday Discuss. 136, 45–55 (2007)

    Article  Google Scholar 

  29. Hill, R.G., Brauer, D.S.: Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non Cryst. Solids 357, 3884–3887 (2011)

    Article  Google Scholar 

  30. Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Salinas, A.J., Vallet-Regi, M.: New insights into the bioactivity of SiO2–CaO and SiO2–CaO–P2O5 sol–gel glasses by molecular dynamics simulations. J. Sol–Gel. Sci. Technol. 67, 208–219 (2013)

    Article  Google Scholar 

  31. Lusvardi, G., Malavasi, G., Tarsitano, F., Menabue, L., Menziani, M.C., Pedone, A.: Quantitative structure–property relationships of potentially bioactive fluoro phospho-silicate glasses. J. Phys. Chem. B 113, 10331–10338 (2009)

    Article  Google Scholar 

  32. Christie, J.K., Pedone, A., Menziani, M.C., Tilocca, A.: Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J. Phys. Chem. B 115, 2038–2045 (2011)

    Article  Google Scholar 

  33. Lusvardi, G., Malavasi, G., Cortada, M., Menabue, L., Menziani, M.C., Pedone, A., et al.: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 112, 12730–12739 (2008)

    Article  Google Scholar 

  34. Christie, J.K., Tilocca, A.: Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. J. Mater. Chem. 22, 12023–12031 (2012)

    Article  Google Scholar 

  35. Pedone, A., Malavasi, G., Menziani, M.C.: Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C 113, 15723–15730 (2009)

    Article  Google Scholar 

  36. Christie, J.K., Tilocca, A.: Molecular dynamics simulations and structural descriptors of radioisotope glass vectors for in situ radiotherapy. J. Phys. Chem. B 116, 12614–12620 (2012)

    Article  Google Scholar 

  37. Christie, J.K., Tilocca, A.: Aluminosilicate glasses as yttrium vectors for in situ radiotherapy: understanding composition-durability effects through molecular dynamics simulations. Chem. Mater. 22, 3725–3734 (2010)

    Article  Google Scholar 

  38. Malavasi, G., Pedone, A., Menziani, M.C.: Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J. Phys. Chem. B 117, 4142–4150 (2013)

    Article  Google Scholar 

  39. Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: A computational tool for the prediction of crystalline phases obtained from controlled crystallization of glasses. J. Phys. Chem. B 109, 21586–21592 (2005)

    Article  Google Scholar 

  40. Malavasi, G., Lusvardi, G., Pedone, A., Menziani, M.C., Dappiaggi, M., Gualtieri, A., et al.: Crystallization kinetics of bioactive glasses in the ZnO–Na2O–CaO–SiO2 system. J. Phys. Chem. A 111, 8401–8408 (2007)

    Article  Google Scholar 

  41. Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)

    Article  Google Scholar 

  42. Kokubo, T.: Surface chemistry of bioactive glass-ceramics. J. Non Cryst. Solids 120, 138–151 (1990)

    Article  Google Scholar 

  43. Xynos, I.D., Edgar, A.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001)

    Article  Google Scholar 

  44. Karlsson, K.H., Fröberg, K., Ringbom, T.: A structural approach to bone adhering of bioactive glasses. J. Non Cryst. Solids 112, 69–72 (1989)

    Article  Google Scholar 

  45. Hill, R.: An alternative view of the degradation of bioglass. J. Mater. Sci. Lett. 15, 1122–1125 (1996)

    Article  Google Scholar 

  46. Lockyer, M.W.G., Holland, D., Dupree, R.: NMR investigation of the structure of some bioactive and related glasses. J. Non Cryst. Solids 188, 207–219 (1995)

    Article  Google Scholar 

  47. Elgayar, I., Aliev, A.E., Boccaccini, A.R., Hill, R.G.: Structural analysis of bioactive glasses. J. Non Cryst. Solids 351, 173–183 (2005)

    Article  Google Scholar 

  48. Pedone, A., Charpentier, T., Menziani, M.C.: The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy. J. Mater. Chem. 22, 12599–12608 (2012)

    Article  Google Scholar 

  49. Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Qualitative and quantitative structure–property relationships analysis of multicomponent potential bioglasses. J. Phys. Chem. B 109, 4989–4998 (2005)

    Article  Google Scholar 

  50. Fayon, F., Duée, C., Poumeyrol, T., Allix, M., Massiot, D.: Evidence of Nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J. Phys. Chem. C 117, 2283–2288 (2013)

    Article  Google Scholar 

  51. Xiang, Y., Du, J.: Effect of strontium substitution on the structure of 45S5 bioglasses. Chem. Mater. 23, 2703–2717 (2011)

    Article  Google Scholar 

  52. Stevensson, B., Mathew, R., Edén, M.: Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 118, 8863–8876 (2014)

    Article  Google Scholar 

  53. Tilocca, A., Cormack, A.N.: Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111, 14256–14264 (2007)

    Article  Google Scholar 

  54. Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Medium-range order in phospho-silicate bioactive glasses: insights from MAS–NMR spectra, chemical durability experiments and molecular dynamics simulations. J. Non Cryst. Solids 354, 84–89 (2008)

    Article  Google Scholar 

  55. Mathew, R., Stevensson, B., Edén, M.: Na/ca intermixing around silicate and phosphate groups in bioactive phosphosilicate glasses revealed by heteronuclear solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 119, 5701–5715 (2015)

    Article  Google Scholar 

  56. Mathew, R., Stevensson, B., Tilocca, A., Edén, M.: Toward a rational design of bioactive glasses with optimal structural features: composition-structure correlations unveiled by solid-state NMR and MD simulations. J. Phys. Chem. B 118, 833–844 (2014)

    Article  Google Scholar 

  57. Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)

    Article  Google Scholar 

  58. Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Cormack, A.N.: Role of magnesium in soda-lime glasses: insight into structural, transport, and mechanical properties through computer simulations. J. Phys. Chem. C 112, 11034–11041 (2008)

    Article  Google Scholar 

  59. Kapoor, S., Semitela, Â., Goel, A., Xiang, Y., Du, J., Lourenço, A.H., et al.: Understanding the composition-structure-bioactivity relationships in diopside (CaO · MgO · 2SiO2)-tricalcium phosphate (3CaO · P2O5) glass system. Acta Biomater. 15, 210–226 (2015)

    Article  Google Scholar 

  60. Du, J., Xiang, Y.: Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses. J. Non Cryst. Solids 358, 1059–1071 (2012)

    Article  Google Scholar 

  61. Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B 106, 9753–9760 (2002)

    Article  Google Scholar 

  62. Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: A combined experimental-computational strategy for the design, synthesis and characterization of bioactive zinc-silicate glasses. Key Eng. Mater. 377, 211–224 (2008)

    Article  Google Scholar 

  63. Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: Density of multicomponent silica-based potential bioglasses: quantitative structure–property relationships (QSPR) analysis. J. Eur. Ceram. Soc. 27, 499–504 (2007)

    Article  Google Scholar 

  64. Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Segre, U., Carnasciali, M.M., et al.: A combined experimental and computational approach to (Na2O)1 – x · CaO · (ZnO)x · 2SiO2 glasses characterization. J. Non Cryst. Solids 345–346, 710–714 (2004)

    Article  Google Scholar 

  65. Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U., et al.: Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 22, 505–526 (2008)

    Article  Google Scholar 

  66. Lusvardi, G., Zaffe, D., Menabue, L., Bertoldi, C., Malavasi, G., Consolo, U.: In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomater. 5, 419–428 (2009)

    Article  Google Scholar 

  67. Goel, A., Kapoor, S., Tilocca, A., Rajagopal, R.R., Ferreira, J.M.F.: Structural role of zinc in biodegradation of alkali-free bioactive glasses. J. Mater. Chem. B 1, 3073–3082 (2013)

    Article  Google Scholar 

  68. Xiang, Y., Du, J., Skinner, L.B., Benmore, C.J., Wren, A.W., Boyd, D.J., et al.: Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 3, 5966–5978 (2013)

    Article  Google Scholar 

  69. Kapoor, S., Goel, A., Tilocca, A., Dhuna, V., Bhatia, G., Dhuna, K., et al.: Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater. 10, 3264–3278 (2014)

    Article  Google Scholar 

  70. Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)

    Article  Google Scholar 

  71. Tilocca, A.: Models of structure, dynamics and reactivity of bioglasses: a review. J. Mater. Chem. 20, 6848–6858 (2010)

    Article  Google Scholar 

  72. Lusvardi, G., Malavasi, G., Menabue, L., Aina, V., Morterra, C.: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater. 5, 3548–3562 (2009)

    Article  Google Scholar 

  73. Nicolini, V., Gambuzzi, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J. Phys. Chem. B 119, 4009–4019 (2015)

    Article  Google Scholar 

  74. Nicolini, V., Varini, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: The effect of composition on structural, thermal, redox and bioactive properties of ce-containing glasses. Mater. Des. 97, 73–85 (2016)

    Google Scholar 

  75. Pedone, A., Muniz-Miranda, F., Tilocca, A., Menziani, M.C.: The antioxidant properties of Ce-containing bioactive glass nanoparticles explained by molecular dynamics simulations. Biomed. Glas. 2, 19–28 (2016)

    Google Scholar 

  76. Leonelli, C., Lusvardi, G., Malavasi, G., Menabue, L., Tonelli, M.: Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J. Non Cryst. Solids 316, 198–216 (2003)

    Article  Google Scholar 

  77. Berardo, E., Pedone, A., Ugliengo, P., Corno, M.: DFT modeling of 45S5 and 77S Soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism. Langmuir 29, 5749–5759 (2013)

    Article  Google Scholar 

  78. Sahai, N., Anseau, M.: Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials 26, 5763–5770 (2005)

    Article  Google Scholar 

  79. Bolis, V., Busco, C., Aina, V., Morterra, C., Ugliengo, P.: Surface properties of silica-based biomaterials: ca species at the surface of amorphous silica as model sites. J. Phys. Chem. C 112, 16879–16892 (2008)

    Article  Google Scholar 

  80. Tilocca, A., Cormack, A.N.: Exploring the surface of bioactive glasses: water adsorption and reactivity. J. Phys. Chem. C 112, 11936–11945 (2008)

    Article  Google Scholar 

  81. Tilocca, A., Cormack, A.N.: Modeling the water–bioglass interface by ab initio molecular dynamics simulations. ACS Appl. Mater. Interfaces. 1, 1324–1333 (2009)

    Article  Google Scholar 

  82. Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Musso, F., Corno, M., et al.: FFSiOH: a new force field for silica polymorphs and their hydroxylated surfaces based on periodic B3LYP calculations. Chem. Mater. 20, 2522–2531 (2008)

    Article  Google Scholar 

  83. Tilocca, A.: Molecular dynamics simulations of a bioactive glass nanoparticle. J. Mater. Chem. 21, 12660–12667 (2011)

    Article  Google Scholar 

  84. Neel, E.A.A., Pickup, D.M., Valappil, S.P., Newport, R.J., Knowles, J.C.: Bioactive functional materials: a perspective on phosphate-based glasses. J. Mater. Chem. 19, 690–701 (2009)

    Article  Google Scholar 

  85. Knowles, J.C.: Phosphate based glasses for biomedical applications. J. Mater. Chem. 13, 2395–2401 (2003)

    Article  Google Scholar 

  86. Ahmed, I., Collins, C.A., Lewis, M.P., Olsen, I., Knowles, J.C.: Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25, 3223–3232 (2004)

    Article  Google Scholar 

  87. Neel, E.A.A., Ahmed, I., Pratten, J., Nazhat, S.N., Knowles, J.C.: Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26, 2247–2254 (2005)

    Article  Google Scholar 

  88. Ahmed, I., Lewis, M., Olsen, I., Knowles, J.C.: Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25, 491–499 (2004)

    Article  Google Scholar 

  89. Uo, M., Mizuno, M., Kuboki, Y., Makishima, A., Watari, F.: Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19, 2277–2284 (1998)

    Article  Google Scholar 

  90. Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., O’Dell, L.A., Chrzanowski, W., et al.: Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater. 5, 1198–1210 (2009)

    Article  Google Scholar 

  91. Tang, E., Di Tommaso, D., de Leeuw, N.H.: An ab initio molecular dynamics study of bioactive phosphate glasses. Adv. Eng. Mater. 12, B331–B338 (2010)

    Article  Google Scholar 

  92. Ainsworth, R.I., Tommaso, D.D., Christie, J.K., de Leeuw, N.H.: Polarizable force field development and molecular dynamics study of phosphate-based glasses. J. Chem. Phys. 137, 234502 (2012)

    Article  Google Scholar 

  93. Christie, J.K., Ainsworth, R.I., Di Tommaso, D., de Leeuw, N.H.: Nanoscale chains control the solubility of phosphate glasses for biomedical applications. J. Phys. Chem. B 117, 10652–10657 (2013)

    Article  Google Scholar 

  94. Christie, J.K., Ainsworth, R.I., de Leeuw, N.H.: Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials 35, 6164–6171 (2014)

    Article  Google Scholar 

  95. Ainsworth, R.I., Christie, J.K., de Leeuw, N.H.: On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations. Phys. Chem. Chem. Phys. 16, 21135–21143 (2014)

    Article  Google Scholar 

  96. Christie, J.K., Ainsworth, R.I., de Leeuw, N.H.: Investigating structural features which control the dissolution of bioactive phosphate glasses: beyond the network connectivity. J. Non-Cryst. Solids [Internet]. [cited 2015 Jul 30]. http://www.sciencedirect.com/science/article/pii/S0022309315000332

  97. Sheridan, R., Doherty, P.J., Gilchrist, T., Healy, D.: The effect of antibacterial agents on the behaviour of cultured mammalian fibroblasts. J. Mater. Sci. Mater. Med. 6, 853–856 (1995)

    Article  Google Scholar 

  98. Ahmed, I., Ready, D., Wilson, M., Knowles, J.C.: Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res. A 79A, 618–626 (2006)

    Article  Google Scholar 

  99. Randall, C.P., Oyama, L.B., Bostock, J.M., Chopra, I., O’Neill, A.J.: The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J. Antimicrob. Chemother. 68, 131–138 (2013)

    Article  Google Scholar 

  100. Valappil, S.P., Pickup, D.M., Carroll, D.L., Hope, C.K., Pratten, J., Newport, R.J., et al.: Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob. Agents Chemother. 51, 4453–4461 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfonso Pedone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pedone, A., Menziani, M.C. (2016). What Can We Learn from Atomistic Simulations of Bioactive Glasses?. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_5

Download citation

Publish with us

Policies and ethics