Advertisement

What Can We Learn from Atomistic Simulations of Bioactive Glasses?

  • Alfonso PedoneEmail author
  • Maria Cristina Menziani
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)

Abstract

In the last decades, most experimental efforts have been devoted to design bioactive glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) with enhanced biological and mechanical properties by adding specific ions to known bioactive compositions. Concurrently, computational research has been focused to the understanding of the relationships between bioactivity and composition by rationalization of the role of the doping ions. Thus, a deep knowledge of the structural organization of the constituent atoms of the bioactive glasses has been gained by the employment of ab initio and classical molecular dynamics simulations techniques. This chapter reviews the recent successes in this field by presenting, in a concise way, the structure–properties relationships of silicate, phospho-silicate and phosphate glasses with potential bioactive properties.

Keywords

Molecular Dynamic Simulation Network Connectivity Bioactive Glass Phosphate Glass Glass Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013)CrossRefGoogle Scholar
  2. 2.
    Brauer, D.S.: Bioactive glasses—structure and properties. Angew. Chem. Int. Ed. 54, 4160–4181 (2015)CrossRefGoogle Scholar
  3. 3.
    Hench, L.L.: Bioceramics. J. Am. Ceram. Soc. 81, 1705–1728 (1998)CrossRefGoogle Scholar
  4. 4.
    Martin, R.A., Yue, S., Hanna, J.V., Lee, P.D., Newport, R.J., Smith, M.E., et al.: Characterizing the hierarchical structures of bioactive sol–gel silicate glass and hybrid scaffolds for bone regeneration. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1422–1443 (2012)CrossRefGoogle Scholar
  5. 5.
    Pedone, A.: Properties calculations of silica-based glasses by atomistic simulations techniques: a review. J. Phys. Chem. C 113, 20773–20784 (2009)CrossRefGoogle Scholar
  6. 6.
    Malavasi, G., Menziani, M.C., Pedone, A., Civalleri, B., Corno, M., Ugliengo, P.: A computational multiscale strategy to the study of amorphous materials. Theor. Chem. Acc. 117, 933–942 (2007)CrossRefGoogle Scholar
  7. 7.
    Malavasi, G., Pedone, A., Menziani, M.C.: Towards a quantitative rationalization of multicomponent glass properties by means of molecular dynamics simulations. Mol. Simul. 32, 1045–1055 (2006)CrossRefGoogle Scholar
  8. 8.
    Pedone, A., Menziani, M.C.: Computational modeling of silicate glasses: a quantitative structure–property relationship perspective. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S. (eds.) Molecular Dynamic Simulation of Disordered Materials [Internet], pp. 113–35. Springer, New York (2015) [cited 2015 Aug 24]. http://link.springer.com/chapter/10.1007/978-3-319-15675-0_5
  9. 9.
    Tilocca, A.: Rationalizing the biodegradation of glasses for biomedical applications through classical and ab-initio simulations. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S. (eds.) Molecular Dynamic Simulation of Disordered Materials [Internet]. Springer, New York, pp. 255–273 (2015) [cited 2015 Aug 24]. http://link.springer.com/chapter/10.1007/978-3-319-15675-0_10
  10. 10.
    Tilocca, A.: Current challenges in atomistic simulations of glasses for biomedical applications. Phys. Chem. Chem. Phys. 16, 3874–3880 (2014)CrossRefGoogle Scholar
  11. 11.
    Du, J.: Challenges in molecular dynamics simulations of multicomponent oxide glasses. In: Massobrio, C., Du, J., Bernasconi, M., Salmon, P.S. (eds.) Molecular Dynamic Simulation of Disordered Materials [Internet]. Springer, New York, pp. 157–180 (2015) [cited 2015 Aug 24]. http://link.springer.com/chapter/10.1007/978-3-319-15675-0_7
  12. 12.
    Tilocca, A.: Structural models of bioactive glasses from molecular dynamics simulations. In: Proceeding of the Royal Society of London A Mathematical, Physical and Engineering Sciences (2009). rspa.2008.0462Google Scholar
  13. 13.
    Cormack, A.N., Tilocca, A.: Structure and biological activity of glasses and ceramics. Philos. Transact. A Math. Phys. Eng. Sci. 370, 1271–1280 (2012)CrossRefGoogle Scholar
  14. 14.
    Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987)Google Scholar
  15. 15.
    Pedone, A., Corno, M., Civalleri, B., Malavasi, G., Menziani, M.C., Segre, U., et al.: An ab initio parameterized interatomic force field for hydroxyapatite. J. Mater. Chem. 17, 2061–2068 (2007)CrossRefGoogle Scholar
  16. 16.
    Pedone, A., Malavasi, G., Menziani, M.C., Cormack, A.N., Segre, U.: A new self-consistent empirical interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 110, 11780–11795 (2006)CrossRefGoogle Scholar
  17. 17.
    Tilocca, A., de Leeuw, N.H., Cormack, A.N.: Shell-model molecular dynamics calculations of modified silicate glasses. Phys. Rev. B. 73, 104209 (2006)CrossRefGoogle Scholar
  18. 18.
    Tilocca, A.: Short- and medium-range structure of multicomponent bioactive glasses and melts: an assessment of the performances of shell-model and rigid-ion potentials. J. Chem. Phys. 129, 084504 (2008)CrossRefGoogle Scholar
  19. 19.
    Yu, H., van Gunsteren, W.F.: Accounting for polarization in molecular simulation. Comput. Phys. Commun. 172, 69–85 (2005)CrossRefGoogle Scholar
  20. 20.
    Ispas, S., Benoit, M., Jund, P., Jullien, R.: Structural and electronic properties of the sodium tetrasilicate glass Na2Si4O9 from classical and ab initio molecular dynamics simulations. Phys. Rev. B 64, 214206 (2001)CrossRefGoogle Scholar
  21. 21.
    Tilocca, A., de Leeuw, N.H.: Structural and electronic properties of modified sodium and soda-lime silicate glasses by Car-Parrinello molecular dynamics. J. Mater. Chem. 16, 1950–1955 (2006)CrossRefGoogle Scholar
  22. 22.
    Tilocca, A., de Leeuw, N.H.: Ab initio molecular dynamics study of 45S5 bioactive silicate glass. J. Phys. Chem. B 110, 25810–25816 (2006)CrossRefGoogle Scholar
  23. 23.
    Corno, M., Pedone, A., Dovesi, R., Ugliengo, P.: B3LYP simulation of the full vibrational spectrum of 45S5 bioactive silicate glass compared to nu-silica. Chem. Mater. 20, 5610–5621 (2008)CrossRefGoogle Scholar
  24. 24.
    Corno, M., Pedone, A.: Vibrational features of phospho-silicate glasses: Periodic B3LYP simulations. Chem. Phys. Lett. 476, 218–222 (2009)CrossRefGoogle Scholar
  25. 25.
    Pedone, A., Charpentier, T., Malavasi, G., Menziani, M.C.: New insights into the atomic structure of 45S5 bioglass by means of solid-state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010)CrossRefGoogle Scholar
  26. 26.
    Charpentier, T., Menziani, M.C., Pedone, A.: Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses. Rsc Adv. 3, 10550–10578 (2013)CrossRefGoogle Scholar
  27. 27.
    Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The structure of bioactive silicate glasses: new insight from molecular dynamics simulations. Chem. Mater. 19, 95–103 (2007)CrossRefGoogle Scholar
  28. 28.
    Tilocca, A., Cormack, A.N., de Leeuw, N.H.: The formation of nanoscale structures in soluble phosphosilicate glasses for biomedical applications: MD simulations. Faraday Discuss. 136, 45–55 (2007)CrossRefGoogle Scholar
  29. 29.
    Hill, R.G., Brauer, D.S.: Predicting the bioactivity of glasses using the network connectivity or split network models. J. Non Cryst. Solids 357, 3884–3887 (2011)CrossRefGoogle Scholar
  30. 30.
    Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Salinas, A.J., Vallet-Regi, M.: New insights into the bioactivity of SiO2–CaO and SiO2–CaO–P2O5 sol–gel glasses by molecular dynamics simulations. J. Sol–Gel. Sci. Technol. 67, 208–219 (2013)CrossRefGoogle Scholar
  31. 31.
    Lusvardi, G., Malavasi, G., Tarsitano, F., Menabue, L., Menziani, M.C., Pedone, A.: Quantitative structure–property relationships of potentially bioactive fluoro phospho-silicate glasses. J. Phys. Chem. B 113, 10331–10338 (2009)CrossRefGoogle Scholar
  32. 32.
    Christie, J.K., Pedone, A., Menziani, M.C., Tilocca, A.: Fluorine environment in bioactive glasses: ab initio molecular dynamics simulations. J. Phys. Chem. B 115, 2038–2045 (2011)CrossRefGoogle Scholar
  33. 33.
    Lusvardi, G., Malavasi, G., Cortada, M., Menabue, L., Menziani, M.C., Pedone, A., et al.: Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation. J. Phys. Chem. B 112, 12730–12739 (2008)CrossRefGoogle Scholar
  34. 34.
    Christie, J.K., Tilocca, A.: Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. J. Mater. Chem. 22, 12023–12031 (2012)CrossRefGoogle Scholar
  35. 35.
    Pedone, A., Malavasi, G., Menziani, M.C.: Computational insight into the effect of CaO/MgO substitution on the structural properties of phospho-silicate bioactive glasses. J. Phys. Chem. C 113, 15723–15730 (2009)CrossRefGoogle Scholar
  36. 36.
    Christie, J.K., Tilocca, A.: Molecular dynamics simulations and structural descriptors of radioisotope glass vectors for in situ radiotherapy. J. Phys. Chem. B 116, 12614–12620 (2012)CrossRefGoogle Scholar
  37. 37.
    Christie, J.K., Tilocca, A.: Aluminosilicate glasses as yttrium vectors for in situ radiotherapy: understanding composition-durability effects through molecular dynamics simulations. Chem. Mater. 22, 3725–3734 (2010)CrossRefGoogle Scholar
  38. 38.
    Malavasi, G., Pedone, A., Menziani, M.C.: Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations. J. Phys. Chem. B 117, 4142–4150 (2013)CrossRefGoogle Scholar
  39. 39.
    Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: A computational tool for the prediction of crystalline phases obtained from controlled crystallization of glasses. J. Phys. Chem. B 109, 21586–21592 (2005)CrossRefGoogle Scholar
  40. 40.
    Malavasi, G., Lusvardi, G., Pedone, A., Menziani, M.C., Dappiaggi, M., Gualtieri, A., et al.: Crystallization kinetics of bioactive glasses in the ZnO–Na2O–CaO–SiO2 system. J. Phys. Chem. A 111, 8401–8408 (2007)CrossRefGoogle Scholar
  41. 41.
    Hench, L.L., Splinter, R.J., Allen, W.C., Greenlee, T.K.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)CrossRefGoogle Scholar
  42. 42.
    Kokubo, T.: Surface chemistry of bioactive glass-ceramics. J. Non Cryst. Solids 120, 138–151 (1990)CrossRefGoogle Scholar
  43. 43.
    Xynos, I.D., Edgar, A.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001)CrossRefGoogle Scholar
  44. 44.
    Karlsson, K.H., Fröberg, K., Ringbom, T.: A structural approach to bone adhering of bioactive glasses. J. Non Cryst. Solids 112, 69–72 (1989)CrossRefGoogle Scholar
  45. 45.
    Hill, R.: An alternative view of the degradation of bioglass. J. Mater. Sci. Lett. 15, 1122–1125 (1996)CrossRefGoogle Scholar
  46. 46.
    Lockyer, M.W.G., Holland, D., Dupree, R.: NMR investigation of the structure of some bioactive and related glasses. J. Non Cryst. Solids 188, 207–219 (1995)CrossRefGoogle Scholar
  47. 47.
    Elgayar, I., Aliev, A.E., Boccaccini, A.R., Hill, R.G.: Structural analysis of bioactive glasses. J. Non Cryst. Solids 351, 173–183 (2005)CrossRefGoogle Scholar
  48. 48.
    Pedone, A., Charpentier, T., Menziani, M.C.: The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy. J. Mater. Chem. 22, 12599–12608 (2012)CrossRefGoogle Scholar
  49. 49.
    Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Qualitative and quantitative structure–property relationships analysis of multicomponent potential bioglasses. J. Phys. Chem. B 109, 4989–4998 (2005)CrossRefGoogle Scholar
  50. 50.
    Fayon, F., Duée, C., Poumeyrol, T., Allix, M., Massiot, D.: Evidence of Nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J. Phys. Chem. C 117, 2283–2288 (2013)CrossRefGoogle Scholar
  51. 51.
    Xiang, Y., Du, J.: Effect of strontium substitution on the structure of 45S5 bioglasses. Chem. Mater. 23, 2703–2717 (2011)CrossRefGoogle Scholar
  52. 52.
    Stevensson, B., Mathew, R., Edén, M.: Assessing the phosphate distribution in bioactive phosphosilicate glasses by 31P solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 118, 8863–8876 (2014)CrossRefGoogle Scholar
  53. 53.
    Tilocca, A., Cormack, A.N.: Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111, 14256–14264 (2007)CrossRefGoogle Scholar
  54. 54.
    Linati, L., Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Mustarelli, P., et al.: Medium-range order in phospho-silicate bioactive glasses: insights from MAS–NMR spectra, chemical durability experiments and molecular dynamics simulations. J. Non Cryst. Solids 354, 84–89 (2008)CrossRefGoogle Scholar
  55. 55.
    Mathew, R., Stevensson, B., Edén, M.: Na/ca intermixing around silicate and phosphate groups in bioactive phosphosilicate glasses revealed by heteronuclear solid-state NMR and molecular dynamics simulations. J. Phys. Chem. B 119, 5701–5715 (2015)CrossRefGoogle Scholar
  56. 56.
    Mathew, R., Stevensson, B., Tilocca, A., Edén, M.: Toward a rational design of bioactive glasses with optimal structural features: composition-structure correlations unveiled by solid-state NMR and MD simulations. J. Phys. Chem. B 118, 833–844 (2014)CrossRefGoogle Scholar
  57. 57.
    Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011)CrossRefGoogle Scholar
  58. 58.
    Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Cormack, A.N.: Role of magnesium in soda-lime glasses: insight into structural, transport, and mechanical properties through computer simulations. J. Phys. Chem. C 112, 11034–11041 (2008)CrossRefGoogle Scholar
  59. 59.
    Kapoor, S., Semitela, Â., Goel, A., Xiang, Y., Du, J., Lourenço, A.H., et al.: Understanding the composition-structure-bioactivity relationships in diopside (CaO · MgO · 2SiO2)-tricalcium phosphate (3CaO · P2O5) glass system. Acta Biomater. 15, 210–226 (2015)CrossRefGoogle Scholar
  60. 60.
    Du, J., Xiang, Y.: Effect of strontium substitution on the structure, ionic diffusion and dynamic properties of 45S5 Bioactive glasses. J. Non Cryst. Solids 358, 1059–1071 (2012)CrossRefGoogle Scholar
  61. 61.
    Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: Synthesis, characterization, and molecular dynamics simulation of Na2O–CaO–SiO2–ZnO glasses. J. Phys. Chem. B 106, 9753–9760 (2002)CrossRefGoogle Scholar
  62. 62.
    Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C.: A combined experimental-computational strategy for the design, synthesis and characterization of bioactive zinc-silicate glasses. Key Eng. Mater. 377, 211–224 (2008)CrossRefGoogle Scholar
  63. 63.
    Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U.: Density of multicomponent silica-based potential bioglasses: quantitative structure–property relationships (QSPR) analysis. J. Eur. Ceram. Soc. 27, 499–504 (2007)CrossRefGoogle Scholar
  64. 64.
    Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Segre, U., Carnasciali, M.M., et al.: A combined experimental and computational approach to (Na2O)1 – x · CaO · (ZnO)x · 2SiO2 glasses characterization. J. Non Cryst. Solids 345–346, 710–714 (2004)CrossRefGoogle Scholar
  65. 65.
    Lusvardi, G., Malavasi, G., Menabue, L., Menziani, M.C., Pedone, A., Segre, U., et al.: Properties of zinc releasing surfaces for clinical applications. J. Biomater. Appl. 22, 505–526 (2008)CrossRefGoogle Scholar
  66. 66.
    Lusvardi, G., Zaffe, D., Menabue, L., Bertoldi, C., Malavasi, G., Consolo, U.: In vitro and in vivo behaviour of zinc-doped phosphosilicate glasses. Acta Biomater. 5, 419–428 (2009)CrossRefGoogle Scholar
  67. 67.
    Goel, A., Kapoor, S., Tilocca, A., Rajagopal, R.R., Ferreira, J.M.F.: Structural role of zinc in biodegradation of alkali-free bioactive glasses. J. Mater. Chem. B 1, 3073–3082 (2013)CrossRefGoogle Scholar
  68. 68.
    Xiang, Y., Du, J., Skinner, L.B., Benmore, C.J., Wren, A.W., Boyd, D.J., et al.: Structure and diffusion of ZnO–SrO–CaO–Na2O–SiO2 bioactive glasses: a combined high energy X-ray diffraction and molecular dynamics simulations study. RSC Adv. 3, 5966–5978 (2013)CrossRefGoogle Scholar
  69. 69.
    Kapoor, S., Goel, A., Tilocca, A., Dhuna, V., Bhatia, G., Dhuna, K., et al.: Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. Acta Biomater. 10, 3264–3278 (2014)CrossRefGoogle Scholar
  70. 70.
    Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015)CrossRefGoogle Scholar
  71. 71.
    Tilocca, A.: Models of structure, dynamics and reactivity of bioglasses: a review. J. Mater. Chem. 20, 6848–6858 (2010)CrossRefGoogle Scholar
  72. 72.
    Lusvardi, G., Malavasi, G., Menabue, L., Aina, V., Morterra, C.: Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater. 5, 3548–3562 (2009)CrossRefGoogle Scholar
  73. 73.
    Nicolini, V., Gambuzzi, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: Evidence of catalase mimetic activity in Ce3+/Ce4+ doped bioactive glasses. J. Phys. Chem. B 119, 4009–4019 (2015)CrossRefGoogle Scholar
  74. 74.
    Nicolini, V., Varini, E., Malavasi, G., Menabue, L., Menziani, M.C., Lusvardi, G., et al.: The effect of composition on structural, thermal, redox and bioactive properties of ce-containing glasses. Mater. Des. 97, 73–85 (2016)Google Scholar
  75. 75.
    Pedone, A., Muniz-Miranda, F., Tilocca, A., Menziani, M.C.: The antioxidant properties of Ce-containing bioactive glass nanoparticles explained by molecular dynamics simulations. Biomed. Glas. 2, 19–28 (2016)Google Scholar
  76. 76.
    Leonelli, C., Lusvardi, G., Malavasi, G., Menabue, L., Tonelli, M.: Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J. Non Cryst. Solids 316, 198–216 (2003)CrossRefGoogle Scholar
  77. 77.
    Berardo, E., Pedone, A., Ugliengo, P., Corno, M.: DFT modeling of 45S5 and 77S Soda-lime phospho-silicate glass surfaces: clues on different bioactivity mechanism. Langmuir 29, 5749–5759 (2013)CrossRefGoogle Scholar
  78. 78.
    Sahai, N., Anseau, M.: Cyclic silicate active site and stereochemical match for apatite nucleation on pseudowollastonite bioceramic-bone interfaces. Biomaterials 26, 5763–5770 (2005)CrossRefGoogle Scholar
  79. 79.
    Bolis, V., Busco, C., Aina, V., Morterra, C., Ugliengo, P.: Surface properties of silica-based biomaterials: ca species at the surface of amorphous silica as model sites. J. Phys. Chem. C 112, 16879–16892 (2008)CrossRefGoogle Scholar
  80. 80.
    Tilocca, A., Cormack, A.N.: Exploring the surface of bioactive glasses: water adsorption and reactivity. J. Phys. Chem. C 112, 11936–11945 (2008)CrossRefGoogle Scholar
  81. 81.
    Tilocca, A., Cormack, A.N.: Modeling the water–bioglass interface by ab initio molecular dynamics simulations. ACS Appl. Mater. Interfaces. 1, 1324–1333 (2009)CrossRefGoogle Scholar
  82. 82.
    Pedone, A., Malavasi, G., Menziani, M.C., Segre, U., Musso, F., Corno, M., et al.: FFSiOH: a new force field for silica polymorphs and their hydroxylated surfaces based on periodic B3LYP calculations. Chem. Mater. 20, 2522–2531 (2008)CrossRefGoogle Scholar
  83. 83.
    Tilocca, A.: Molecular dynamics simulations of a bioactive glass nanoparticle. J. Mater. Chem. 21, 12660–12667 (2011)CrossRefGoogle Scholar
  84. 84.
    Neel, E.A.A., Pickup, D.M., Valappil, S.P., Newport, R.J., Knowles, J.C.: Bioactive functional materials: a perspective on phosphate-based glasses. J. Mater. Chem. 19, 690–701 (2009)CrossRefGoogle Scholar
  85. 85.
    Knowles, J.C.: Phosphate based glasses for biomedical applications. J. Mater. Chem. 13, 2395–2401 (2003)CrossRefGoogle Scholar
  86. 86.
    Ahmed, I., Collins, C.A., Lewis, M.P., Olsen, I., Knowles, J.C.: Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25, 3223–3232 (2004)CrossRefGoogle Scholar
  87. 87.
    Neel, E.A.A., Ahmed, I., Pratten, J., Nazhat, S.N., Knowles, J.C.: Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26, 2247–2254 (2005)CrossRefGoogle Scholar
  88. 88.
    Ahmed, I., Lewis, M., Olsen, I., Knowles, J.C.: Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25, 491–499 (2004)CrossRefGoogle Scholar
  89. 89.
    Uo, M., Mizuno, M., Kuboki, Y., Makishima, A., Watari, F.: Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19, 2277–2284 (1998)CrossRefGoogle Scholar
  90. 90.
    Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., O’Dell, L.A., Chrzanowski, W., et al.: Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater. 5, 1198–1210 (2009)CrossRefGoogle Scholar
  91. 91.
    Tang, E., Di Tommaso, D., de Leeuw, N.H.: An ab initio molecular dynamics study of bioactive phosphate glasses. Adv. Eng. Mater. 12, B331–B338 (2010)CrossRefGoogle Scholar
  92. 92.
    Ainsworth, R.I., Tommaso, D.D., Christie, J.K., de Leeuw, N.H.: Polarizable force field development and molecular dynamics study of phosphate-based glasses. J. Chem. Phys. 137, 234502 (2012)CrossRefGoogle Scholar
  93. 93.
    Christie, J.K., Ainsworth, R.I., Di Tommaso, D., de Leeuw, N.H.: Nanoscale chains control the solubility of phosphate glasses for biomedical applications. J. Phys. Chem. B 117, 10652–10657 (2013)CrossRefGoogle Scholar
  94. 94.
    Christie, J.K., Ainsworth, R.I., de Leeuw, N.H.: Ab initio molecular dynamics simulations of structural changes associated with the incorporation of fluorine in bioactive phosphate glasses. Biomaterials 35, 6164–6171 (2014)CrossRefGoogle Scholar
  95. 95.
    Ainsworth, R.I., Christie, J.K., de Leeuw, N.H.: On the structure of biomedical silver-doped phosphate-based glasses from molecular dynamics simulations. Phys. Chem. Chem. Phys. 16, 21135–21143 (2014)CrossRefGoogle Scholar
  96. 96.
    Christie, J.K., Ainsworth, R.I., de Leeuw, N.H.: Investigating structural features which control the dissolution of bioactive phosphate glasses: beyond the network connectivity. J. Non-Cryst. Solids [Internet]. [cited 2015 Jul 30]. http://www.sciencedirect.com/science/article/pii/S0022309315000332
  97. 97.
    Sheridan, R., Doherty, P.J., Gilchrist, T., Healy, D.: The effect of antibacterial agents on the behaviour of cultured mammalian fibroblasts. J. Mater. Sci. Mater. Med. 6, 853–856 (1995)CrossRefGoogle Scholar
  98. 98.
    Ahmed, I., Ready, D., Wilson, M., Knowles, J.C.: Antimicrobial effect of silver-doped phosphate-based glasses. J. Biomed. Mater. Res. A 79A, 618–626 (2006)CrossRefGoogle Scholar
  99. 99.
    Randall, C.P., Oyama, L.B., Bostock, J.M., Chopra, I., O’Neill, A.J.: The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. J. Antimicrob. Chemother. 68, 131–138 (2013)CrossRefGoogle Scholar
  100. 100.
    Valappil, S.P., Pickup, D.M., Carroll, D.L., Hope, C.K., Pratten, J., Newport, R.J., et al.: Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses. Antimicrob. Agents Chemother. 51, 4453–4461 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Dipartimento di Scienze Chimiche e GeologicheUniversità degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations