The Evolution, Control, and Effects of the Compositions of Bioactive Glasses on Their Properties and Applications

  • Breno Rocha Barrioni
  • Agda Aline Rocha de Oliveira
  • Marivalda de Magalhães PereiraEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)


Bioactive glasses have been extensively studied for several applications, and understanding their structures is very important for the design of alternative materials and comprehension of the behaviors of these materials. The dissolution products of bioactive glasses are critical for their performance and application and heavily depend on the bioactive glass network. The incorporation of physiologically active ions into their structures and the controlled ion release can lead to therapeutic benefits, such as cell differentiation, antibacterial action, and anti-inflammatory effects, improving the properties of the bioactive glasses. This chapter covers literature reports that have investigated the physicochemical and biological properties of bioactive glasses based on their structures. In particular, recent advances in the understanding of the effects of bioactive glasses with different compositions, which are fabricated via the incorporation of several different ions, on their biological properties and applications are summarized and discussed. This chapter provides an overview of new tissue engineering approaches based on therapeutic ion release, which aids in understanding how the chemical composition can be tailored according to each application.


Bioactive Glass Strontium Ranelate Amorphous Calcium Phosphate Silicate Network Nonbridging Oxygen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge financial support from CNPq, CAPES, and FAPEMIG/Brazil.


  1. 1.
    Hench, L.L.: Chronology of bioactive glass development and clinical applications, pp. 67–73. (2013). doi: 10.4236/njgc.2013.32011
  2. 2.
    Hench, L.L., Hench, J.W., Greenspan, D.C.: Bioglass(R): a short history and bibliography. Mater. Sci. 40, 1–42 (2004)CrossRefGoogle Scholar
  3. 3.
    Hench, L.L.: The story of Bioglass. J. Mater. Sci. Mater. Med. 17, 967–978 (2006). doi: 10.1007/s10856-006-0432-z CrossRefGoogle Scholar
  4. 4.
    Jones, J.R.: Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013). doi: 10.1016/j.actbio.2012.08.023 CrossRefGoogle Scholar
  5. 5.
    Gerhardt, L.-C., Boccaccini, A.R.: Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials (Basel) 3, 3867–3910 (2010). doi: 10.3390/ma3073867 CrossRefGoogle Scholar
  6. 6.
    Brauer DS. bioactive glasses-structure and properties. Angew Chemie Int. Ed. (2015). doi: 10.1002/anie.201405310
  7. 7.
    Wallace, K.E., Hill, R.G., Pembroke, J.T., Brown, C.J., Hatton, P.V.: Influence of sodium oxide content on bioactive glass properties. J. Mater. Sci. Mater. Med. 10, 697–701 (1999). doi: 10.1023/A:1008910718446 CrossRefGoogle Scholar
  8. 8.
    Gupta, R., Kumar, A.: Bioactive materials for biomedical applications using sol–gel technology. Biomed. Mater. 3, 034005 (2008). doi: 10.1088/1748-6041/3/3/034005 CrossRefGoogle Scholar
  9. 9.
    Pereira, M.M., Clark, A.E., Hench, L.L.: Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J. Biomed. Mater. Res. 28, 693–698 (1994)CrossRefGoogle Scholar
  10. 10.
    Pereira, M.M., Hench, L.L.: Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J. Sol–Gel. Sci. Technol. 7, 59–68 (1996). doi: 10.1007/BF00401884 CrossRefGoogle Scholar
  11. 11.
    Rabiee, S.M., Nazparvar, N., Azizian, M., Vashaee, D., Tayebi, L.: Effect of ion substitution on Properties of bioactive glasses: a review. Ceram. Int. 41, 7241–7251 (2015). doi: 10.1016/j.ceramint.2015.02.140 CrossRefGoogle Scholar
  12. 12.
    Kokubo, T.: Bioactive glass ceramics: properties and applications. Biomaterials 12, 155–163 (1991). doi: 10.1016/0142-9612(91)90194-F CrossRefGoogle Scholar
  13. 13.
    Zhong, J., Greenspan, D.C.: Processing and properties of sol–gel bioactive glasses. J. Biomed. Mater. Res. 53, 694–701 (2000). doi: 10.1002/1097-4636(2000)53:6<694:AID-JBM12>3.0.CO;2-6 CrossRefGoogle Scholar
  14. 14.
    Lei, B., Chen, X., Han, X., Zhou, J.: Versatile fabrication of nanoscale sol–gel bioactive glass particles for efficient bone tissue regeneration. J. Mater. Chem. 22, 16906 (2012). doi: 10.1039/c2jm31384g CrossRefGoogle Scholar
  15. 15.
    Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Rebelo, A.H.S., Ferreira, J.M.F.: Development and in vitro characterization of sol–gel derived CaO–P2O5–SiO2–ZnO bioglass. Acta Biomater. 3, 255–262 (2007). doi: 10.1016/j.actbio.2006.09.005 CrossRefGoogle Scholar
  16. 16.
    Faure, J., Drevet, R., Lemelle, A., Ben Jaber, N., Tara, A., El Btaouri, H., et al.: A new sol–gel synthesis of 45S5 bioactive glass using an organic acid as catalyst Preparation of Powder Gel. Mater. Sci. Eng., C 47, 407–412 (2015). doi: 10.1016/j.msec.2014.11.045 CrossRefGoogle Scholar
  17. 17.
    De Oliveira, A.A.R., Gomide, V.S., Leite, M.D.F., Mansur, H.S., Pereira, M.D.M.: Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol–gel derived hybrid foams. Mater. Res. 12, 239–244 (2009). doi: 10.1590/S1516-14392009000200021 Google Scholar
  18. 18.
    Kaur, G., Pandey, O.P., Singh, K., Homa, D., Scott, B., Pickrell, G.: A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 102, 254–274 (2014). doi: 10.1002/jbm.a.34690 CrossRefGoogle Scholar
  19. 19.
    Hanson, E.T., Lewis, R.L., Auerbach, R., Thomson, J.A., Applica, B.: Third-generation biomedical materials, p. 295 (2002)Google Scholar
  20. 20.
    Siqueira, R.L., Zanotto, E.D.: The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO–P2O5 sol–gel glasses and glass-ceramics. J. Mater. Sci. Mater. Med. 24, 365–379 (2013). doi: 10.1007/s10856-012-4797-x CrossRefGoogle Scholar
  21. 21.
    Sepulveda, P., Jones, J.R., Hench, L.: Characterization of melt-derived 45S5 and sol–gel–derived 58S bioactive glasses. J. Biomed. Mater. Res. 58, 734–740 (2001). doi: 10.1002/jbm.10026 CrossRefGoogle Scholar
  22. 22.
    De Barros Coelho, M., Magalhães Pereira, M.: Sol–gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. J. Biomed. Mater. Res. B Appl. Biomater. 75, 451–456 (2005). doi: 10.1002/jbm.b.30354
  23. 23.
    Pereira, M.M., Clark, A.E., Hench, L.L.: Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J. Am. Ceram. Soc. 78, 2463–2468 (1995)CrossRefGoogle Scholar
  24. 24.
    Valerio, P., Guimaráes, M.H.R., Pereira, M.M., Leite, M.F., Goes, A.M.: Primary osteoblast cell response to sol–gel derived bioactive glass foams. J. Mater. Sci. Mater. Med. 16, 851–856 (2005). doi: 10.1007/s10856-005-3582-5 CrossRefGoogle Scholar
  25. 25.
    Lin, S., Ionescu, C., Pike, K.J., Smith, M.E., Jones, J.R.: Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass, pp. 1276–1282 (2009). doi: 10.1039/b814292k
  26. 26.
    FitzGerald, V., Pickup, D.M., Greenspan, D., Sarkar, G., Fitzgerald, J.J., Wetherall, K.M., et al.: A neutron and X-ray diffraction study of bioglass® with reverse Monte Carlo modelling. Adv. Funct. Mater. 17, 3746–3753 (2007). doi: 10.1002/adfm.200700433 CrossRefGoogle Scholar
  27. 27.
    Jugdaohsingh, R., Tucker, K.L., Qiao, N., Cupples, L.A., Kiel, D.P., Powell, J.J.: Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort. J. Bone Miner. Res. 19, 297–307 (2004). doi: 10.1359/JBMR.0301225 CrossRefGoogle Scholar
  28. 28.
    Reffitt, D.M., Ogston, N., Jugdaohsingh, R., Cheung, H.F.J., Evans, B.A.J., Thompson, R.P.H., et al.: Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32, 127–135 (2003). doi: 10.1016/S8756-3282(02)00950-X CrossRefGoogle Scholar
  29. 29.
    Sopcak, T., Medvecky, L., Girman, V., Durisin, J.: Mechanism of precipitation and phase composition of CaO–SiO2–P2O5 systems synthesized by sol–gel method. J. Non Cryst. Solids 415, 16–23 (2015). doi: 10.1016/j.jnoncrysol.2015.02.014 CrossRefGoogle Scholar
  30. 30.
    Vallet-Regí, M., Salinas, A.J., Román, J., Gil, M.: Effect of magnesium content on the in vitro bioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses. J. Mater. Chem. 9, 515–518 (1999). doi: 10.1039/a808679f CrossRefGoogle Scholar
  31. 31.
    Farooq, I., Tylkowski, M., Müller, S., Janicki, T., Brauer, D.S., Hill, R.G.: Influence of sodium content on the properties of bioactive glasses for use in air abrasion. Biomed. Mater. 8, 065008 (2013). doi: 10.1088/1748-6041/8/6/065008 CrossRefGoogle Scholar
  32. 32.
    Salih, V., Patel, A., Knowles, J.C.: Zinc-containing phosphate-based glasses for tissue engineering. Biomed. Mater. 2, 11–20 (2007). doi: 10.1088/1748-6041/2/1/003 CrossRefGoogle Scholar
  33. 33.
    Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., Chrzanowski, W., O’Dell, L.A., et al.: Antimicrobial gallium-doped phosphate-based glasses. Adv. Funct. Mater. 18, 732–741 (2008). doi: 10.1002/adfm.200700931 CrossRefGoogle Scholar
  34. 34.
    Saranti, A., Koutselas, I., Karakassides, M.A.: Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J. Non Cryst. Solids 352, 390–398 (2006). doi: 10.1016/j.jnoncrysol.2006.01.042 CrossRefGoogle Scholar
  35. 35.
    Hoppe, A., Jokic, B., Janackovic, D., Fey, T., Greil, P., Romeis, S., et al.: Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl. Mater. Interfaces 6, 2865–2877 (2014). doi: 10.1021/am405354y CrossRefGoogle Scholar
  36. 36.
    Mercier, C., Follet-Houttemane, C., Pardini, A., Revel, B.: Influence of P2O5 content on the structure of SiO2–Na2O–CaO–P2O5 bioglasses by 29Si and 31P MAS-NMR. J. Non Cryst. Solids 357, 3901–3909 (2011). doi: 10.1016/j.jnoncrysol.2011.07.042 CrossRefGoogle Scholar
  37. 37.
    Lebecq, I., Désanglois, F., Leriche, A., Follet-Houttemane, C.: Compositional dependence on thein vitro bioactivity of invert or conventional bioglasses in the Si–Ca–Na–P system. J. Biomed. Mater. Res., Part A 83A, 156–168 (2007). doi: 10.1002/jbm.a.31228 CrossRefGoogle Scholar
  38. 38.
    Elgayar, I., Aliev, A.E., Boccaccini, A.R., Hill, R.G.: Structural analysis of bioactive glasses. J. Non Cryst. Solids 351, 173–183 (2005). doi: 10.1016/j.jnoncrysol.2004.07.067 CrossRefGoogle Scholar
  39. 39.
    Tilocca, A., Cormack, A.N.: Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111, 14256–14264 (2007). doi: 10.1021/jp075677o CrossRefGoogle Scholar
  40. 40.
    Fayon, F., Duée, C., Poumeyrol, T., Allix, M., Massiot, D.: Evidence of nanometric-sized phosphate clusters in bioactive glasses as revealed by solid-state 31P NMR. J. Phys. Chem. C 117, 2283–2288 (2013). doi: 10.1021/jp312263j CrossRefGoogle Scholar
  41. 41.
    Pedone, A., Charpentier, T., Malavasi, G., Menziani, M.C.: New insights into the atomic structure of 45S5 bioglass by means of solid–state NMR spectroscopy and accurate first-principles simulations. Chem. Mater. 22, 5644–5652 (2010). doi: 10.1021/cm102089c CrossRefGoogle Scholar
  42. 42.
    Padilla, S., Román, J., Carenas, A., Vallet-Regí, M.: The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials 26, 475–483 (2005). doi: 10.1016/j.biomaterials.2004.02.054 CrossRefGoogle Scholar
  43. 43.
    Chen, X., Liao, X., Huang, Z., You, P., Chen, C., Kang, Y., et al.: Synthesis and characterization of novel multiphase bioactive glass-ceramics in the CaO–MgO–SiO2 system. J. Biomed. Mater. Res. B Appl. Biomater. 93, 194–202 (2010). doi: 10.1002/jbm.b.31574 Google Scholar
  44. 44.
    Ryu, H.-S., Lee, J.-K., Seo, J.-H., Kim, H., Hong, K.S., Kim, D.J., et al.: Novel bioactive and biodegradable glass ceramics with high mechanical strength in the CaO–SiO2–B2O3 system. J. Biomed. Mater. Res. A 68, 79–89 (2004). doi: 10.1002/jbm.a.20029 CrossRefGoogle Scholar
  45. 45.
    Yang, X., Zhang, L., Chen, X., Sun, X., Yang, G., Guo, X., et al.: Incorporation of B2O3 in CaO–SiO2–P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J. Non Cryst. Solids 358, 1171–1179 (2012). doi: 10.1016/j.jnoncrysol.2012.02.005 CrossRefGoogle Scholar
  46. 46.
    Fu, Q., Rahaman, M.N., Fu, H., Liu, X.: Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J. Biomed. Mater. Res. A 95, 164–171 (2010). doi: 10.1002/jbm.a.32824 CrossRefGoogle Scholar
  47. 47.
    Liu, X., Huang, W., Fu, H., Yao, A., Wang, D., Pan, H., et al.: Bioactive borosilicate glass scaffolds: Improvement on the strength of glass-based scaffolds for tissue engineering. J. Mater. Sci. Mater. Med. 20, 365–372 (2009). doi: 10.1007/s10856-008-3582-3 CrossRefGoogle Scholar
  48. 48.
    Gu, Y., Wang, G., Zhang, X., Zhang, Y., Zhang, C., Liu, X., et al.: Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. Mater. Sci. Eng., C 36, 294–300 (2014). doi: 10.1016/j.msec.2013.12.023 CrossRefGoogle Scholar
  49. 49.
    Bose, S., Fielding, G., Tarafder, S., Bandyopadhyay, A.: Understanding of dopant-induced osteogenesis and angiogenesis in calcium phosphate ceramics. Trends Biotechnol. 31, 594–605 (2013). doi: 10.1016/j.tibtech.2013.06.005 CrossRefGoogle Scholar
  50. 50.
    Wu, C., Miron, R., Sculean, A., Kaskel, S., Doert, T., Schulze, R., et al.: Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32, 7068–7078 (2011). doi: 10.1016/j.biomaterials.2011.06.009 CrossRefGoogle Scholar
  51. 51.
    Dzondo-Gadet, M., Mayap-Nzietchueng, R., Hess, K., Nabet, P., Belleville, F., Dousset, B.: Action of boron at the molecular level: effects on transcription and translation in an acellular system. Biol. Trace Elem. Res. 85, 23–33 (2002). doi: 10.1385/BTER:85:1:23 CrossRefGoogle Scholar
  52. 52.
    Lee, J.H., Nam, H., Ryu, H.S., Seo, J.H., Chang, B.S., Lee, C.K.: Bioactive ceramic coating of cancellous screws improves the osseointegration in the cancellous bone. J. Orthop. Sci. 16, 291–297 (2011). doi: 10.1007/s00776-011-0047-1 CrossRefGoogle Scholar
  53. 53.
    Maheswaran, A., Hirankumar, G., Heller, N., Karthickprabhu, S., Kawamura, J.: Structure, dielectric and bioactivity of P2O5–CaO–Na2O–B2O3 bioactive glass. Appl. Phys. A 117, 1323–1327 (2014). doi: 10.1007/s00339-014-8545-6 CrossRefGoogle Scholar
  54. 54.
    Ali, S., Farooq, I., Iqbal, K.: A review of the effect of various ions on the properties and the clinical applications of novel bioactive glasses in medicine and dentistry. Saudi Dent J 26, 1–5 (2014). doi: 10.1016/j.sdentj.2013.12.001 CrossRefGoogle Scholar
  55. 55.
    Tilocca, A.: Models of structure, dynamics and reactivity of bioglasses: a review, p. 20 (2010). doi: 10.1039/c0jm01081b
  56. 56.
    Fu, Q., Saiz, E., Rahaman, M.N., Tomsia, A.P.: Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. Mater. Sci. Eng. C 31, 1245–1256 (2011). doi: 10.1016/j.msec.2011.04.022 CrossRefGoogle Scholar
  57. 57.
    Farooq, I., Imran, Z., Farooq, U., Leghari, A., Ali, H.: Bioactive glass: a material for the future. World J. Dent. 3, 199–201 (2012). doi: 10.5005/jp-journals-10015-1156 CrossRefGoogle Scholar
  58. 58.
    De Oliveira, A.A.R., De Souza, D.A., Dias, L.L.S., De Carvalho, S.M., Mansur, H.S., Magalhães Pereira, M.: Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed. Mater. 8, 025011 (2013). doi: 10.1088/1748-6041/8/2/025011 CrossRefGoogle Scholar
  59. 59.
    El-Fiqi, A., Kim, T.-H., Kim, M., Eltohamy, M., Won, J.-E., Lee, E.-J., et al.: Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale (2012). doi: 10.1039/c2nr31775c Google Scholar
  60. 60.
    Shruti, S., Salinas, A.J., Ferrari, E., Malavasi, G., Lusvardi, G., Doadrio, A.L., et al.: Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous Mesoporous Mater. 180, 92–101 (2013). doi: 10.1016/j.micromeso.2013.06.014 CrossRefGoogle Scholar
  61. 61.
    Wu, C., Fan, W., Gelinsky, M., Xiao, Y., Simon, P., Schulze, R., et al.: Bioactive SrO-SiO2 glass with well-ordered mesopores: Characterization, physiochemistry and biological properties. Acta Biomater. 7, 1797–1806 (2011). doi: 10.1016/j.actbio.2010.12.018 CrossRefGoogle Scholar
  62. 62.
    Jones, J.R.: Review of bioactive glass: From Hench to hybrids. Acta Biomater. 9, 4457–4486 (2013). doi: 10.1016/j.actbio.2012.08.023 CrossRefGoogle Scholar
  63. 63.
    Lopes, J.H., Mazali, I.O., Landers, R., Bertran, C.A.: Structural investigation of the surface of bioglass 45S5 enriched with calcium ions. J. Am. Ceram. Soc. 96, 1464–1469 (2013). doi: 10.1111/jace.12305 CrossRefGoogle Scholar
  64. 64.
    Hench, L.L.: Feature 1705. Stress Int. J. Biol. Stress 28, 1705–1728 (1998)Google Scholar
  65. 65.
    Murphy, S., Boyd, D., Moane, S., Bennett, M.: The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. J. Mater. Sci. Mater. Med. 20, 2207–2214 (2009). doi: 10.1007/s10856-009-3789-y CrossRefGoogle Scholar
  66. 66.
    Christodoulou, I., Buttery, L.D.K., Saravanapavan, P., Tai, G., Hench, L.L., Polak, J.M.: Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J. Biomed. Mater. Res. B Appl. Biomater. 74, 529–537 (2005). doi: 10.1002/jbm.b.30249 CrossRefGoogle Scholar
  67. 67.
    Xynos, I.D., Hukkanen, M.V.J., Batten, J.J., Buttery, L.D., Hench, L.L., Polak, J.M.: Bioglass ®45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif. Tissue Int. 67, 321–329 (2000). doi: 10.1007/s002230001134 CrossRefGoogle Scholar
  68. 68.
    Valerio, P., Pereira, M.M., Goes, A.M., Leite, M.F.: The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25, 2941–2948 (2004). doi: 10.1016/j.biomaterials.2003.09.086 CrossRefGoogle Scholar
  69. 69.
    Mourino, V., Cattalini, J.P., Boccaccini, A.R.: Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J. R. Soc. Interface 9, 401–419 (2012). doi: 10.1098/rsif.2011.0611 CrossRefGoogle Scholar
  70. 70.
    Hoppe, A., Güldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 2757–2774 (2011). doi: 10.1016/j.biomaterials.2011.01.004 CrossRefGoogle Scholar
  71. 71.
    Maeno, S., Niki, Y., Matsumoto, H., Morioka, H., Yatabe, T., Funayama, A., et al.: The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26, 4847–4855 (2005). doi: 10.1016/j.biomaterials.2005.01.006 CrossRefGoogle Scholar
  72. 72.
    Gentleman, E., Fredholm, Y.C., Jell, G., Lotfibakhshaiesh, N., O’Donnell, M.D., Hill, R.G., et al.: The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31, 3949–3956 (2010). doi: 10.1016/j.biomaterials.2010.01.121 CrossRefGoogle Scholar
  73. 73.
    Zreiqat, H., Howlett, C.R., Zannettino, A., Evans, P., Schulze-Tanzil, G., Knabe, C., et al.: Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J. Biomed. Mater. Res. 62, 175–184 (2002). doi: 10.1002/jbm.10270 CrossRefGoogle Scholar
  74. 74.
    Diba, M., Tapia, F., Boccaccini, A.R., Strobel, L.A.: Magnesium-containing bioactive glasses for biomedical applications. Int. J. Appl. Glas. Sci. 3, 221–253 (2012). doi: 10.1111/j.2041-1294.2012.00095.x CrossRefGoogle Scholar
  75. 75.
    Wu, C., Zhou, Y., Fan, W., Han, P., Chang, J., Yuen, J., et al.: Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials 33, 2076–2085 (2012). doi: 10.1016/j.biomaterials.2011.11.042 CrossRefGoogle Scholar
  76. 76.
    Gérard, C., Bordeleau, L.J., Barralet, J., Doillon, C.J.: The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 31, 824–831 (2010). doi: 10.1016/j.biomaterials.2009.10.009 CrossRefGoogle Scholar
  77. 77.
    Balamurugan, A., Balossier, G., Laurent-Maquin, D., Pina, S., Rebelo, A.H.S., Faure, J., et al.: An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system. Dent. Mater. 4, 1343–1351 (2008). doi: 10.1016/ CrossRefGoogle Scholar
  78. 78.
    Shruti, S., Salinas, A.J., Malavasi, G., Lusvardi, G., Menabue, L., Ferrara, C., et al.: Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. J. Mater. Chem. 22, 13698 (2012). doi: 10.1039/c2jm31767b CrossRefGoogle Scholar
  79. 79.
    Marie, P.J.: The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46, 571–576 (2010). doi: 10.1016/j.bone.2009.07.082 CrossRefGoogle Scholar
  80. 80.
    Zhou, H., Wei, J., Wu, X., Shi, J., Liu, C., Jia, J., et al.: The bio-functional role of calcium in mesoporous silica xerogels on the responses of osteoblasts in vitro. J. Mater. Sci. Mater. Med. 21, 2175–2185 (2010). doi: 10.1007/s10856-010-4083-8 CrossRefGoogle Scholar
  81. 81.
    Li, H.C., Wang, D.G., Hu, J.H., Chen, C.Z.: Influence of fluoride additions on biological and mechanical properties of Na2O–CaO–SiO2–P2O5 glass-ceramics. Mater. Sci. Eng. C 35, 171–178 (2014). doi: 10.1016/j.msec.2013.10.028 CrossRefGoogle Scholar
  82. 82.
    Lusvardi, G., Malavasi, G., Menabue, L., Aina, V., Morterra, C.: Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions. Acta Biomater. 5, 3548–3562 (2009). doi: 10.1016/j.actbio.2009.06.009 CrossRefGoogle Scholar
  83. 83.
    Brauer, D.S., Anjum, M.N., Mneimne, M., Wilson, R.M., Doweidar, H., Hill, R.G.: Fluoride-containing bioactive glass-ceramics. J. Non Cryst. Solids 358, 1438–1442 (2012). doi: 10.1016/j.jnoncrysol.2012.03.014 CrossRefGoogle Scholar
  84. 84.
    Coulombe, J., Faure, H., Robin, B., Ruat, M.: In vitro effects of strontium ranelate on the extracellular calcium-sensing receptor. Biochem Biophys. Res. Commun. 323, 1184–1190 (2004). doi: 10.1016/j.bbrc.2004.08.209 CrossRefGoogle Scholar
  85. 85.
    Saidak, Z., Marie, P.J.: Strontium signaling: Molecular mechanisms and therapeutic implications in osteoporosis. Pharmacol. Ther. 136, 216–226 (2012). doi: 10.1016/j.pharmthera.2012.07.009 CrossRefGoogle Scholar
  86. 86.
    Wei, L., Ke, J., Prasadam, I., Miron, R.J., Lin, S., Xiao, Y., et al.: A comparative study of Sr-incorporated mesoporous bioactive glass scaffolds for regeneration of osteopenic bone defects. Osteoporos. Int. 25, 2089–2096 (2014). doi: 10.1007/s00198-014-2735-0 CrossRefGoogle Scholar
  87. 87.
    Vasile, E., Popescu, L.M., Piticescu, R.M., Burlacu, A., Buruiana, T.: Physico-chemical and biocompatible properties of hydroxyapatite based composites prepared by an innovative synthesis route. Mater. Lett. 79, 85–88 (2012). doi: 10.1016/j.matlet.2012.03.099 CrossRefGoogle Scholar
  88. 88.
    Yamaguchi, M.: Role of nutritional zinc in the prevention of osteoporosis. Mol. Cell. Biochem. 338, 241–254 (2010). doi: 10.1007/s11010-009-0358-0 CrossRefGoogle Scholar
  89. 89.
    Kwun, I.S., Cho, Y.E., Lomeda, R.A.R., Shin, H.I., Choi, J.Y., Kang, Y.H., et al.: Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 46, 732–741 (2010). doi: 10.1016/j.bone.2009.11.003 CrossRefGoogle Scholar
  90. 90.
    Hatakeyama, D., Kozawa, O., Otsuka, T., Shibata, T., Uematsu, T.: Zinc suppresses IL-6 synthesis by prostaglandin F2α in osteoblasts: inhibition of phospholipase C and phospholipase D. J. Cell. Biochem. 85, 621–628 (2002). doi: 10.1002/jcb.10166 CrossRefGoogle Scholar
  91. 91.
    Castiglioni, S., Cazzaniga, A., Albisetti, W., Maier, J.A.M.: Magnesium and osteoporosis: Current state of knowledge and future research directions. Nutrients 5, 3022–3033 (2013). doi: 10.3390/nu5083022 CrossRefGoogle Scholar
  92. 92.
    Jahnen-Dechent, W., Ketteler, M.: Magnesium basics. CKJ Clin. Kidney J. (2012). doi: 10.1093/ndtplus/sfr163 Google Scholar
  93. 93.
    Torres, P.M.C., Vieira, S.I., Cerqueira, A.R., Pina, S., Da Cruz Silva, O.A.B., Abrantes, J.C.C., et al.: Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J. Inorg. Biochem. 136, 57–66 (2014). doi: 10.1016/j.jinorgbio.2014.03.013 CrossRefGoogle Scholar
  94. 94.
    Rico, H., Gómez-Raso, N., Revilla, M., Hernández, E.R., Seco, C., Páez, E., et al.: Effects on bone loss of manganese alone or with copper supplement in ovariectomized rats a morphometric and densitometric study. Eur. J. Obstet. Gynecol. Reprod. Biol. 90, 97–101 (2000). doi: 10.1016/S0301-2115(99)00223-7 CrossRefGoogle Scholar
  95. 95.
    Landete-Castillejos, T., Currey, J.D., Ceacero, F., García, A.J., Gallego, L., Gomez, S.: Does nutrition affect bone porosity and mineral tissue distribution in deer antlers? The relationship between histology, mechanical properties and mineral composition. Bone 50, 245–254 (2012). doi: 10.1016/j.bone.2011.10.026 CrossRefGoogle Scholar
  96. 96.
    Tanaka, T., Kojima, I., Ohse, T., Ingelfinger, J.R., Adler, S., Fujita, T., et al.: Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab. Invest. 85, 1292–1307 (2005). doi: 10.1038/labinvest.3700328 CrossRefGoogle Scholar
  97. 97.
    Azevedo, M., Jell, G., O’Donnell, M., Law, R., Hill, R., Stevens, M.: Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J. Mater. Chem. (2010). doi: 10.1039/c0jm01111h Google Scholar
  98. 98.
    Wang, Y., Wan, C., Deng, L., Liu, X., Cao, X., Gilbert, S.R., et al.: The hypoxia-inducible factor α pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 117, 1616–1626 (2007). doi: 10.1172/JCI31581 CrossRefGoogle Scholar
  99. 99.
    Ye, J., He, J., Wang, C., Yao, K., Gou, Z.: Copper-containing mesoporous bioactive glass coatings on orbital implants for improving drug delivery capacity and antibacterial activity. Biotechnol. Lett. 36, 961–968 (2014). doi: 10.1007/s10529-014-1465-x CrossRefGoogle Scholar
  100. 100.
    Goh, Y.F., Alshemary, A.Z., Akram, M., Abdul Kadir, M.R., Hussain, R.: Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Int. J. Appl. Glas. Sci. 266, 255–266 (2014). doi: 10.1111/ijag.12061 CrossRefGoogle Scholar
  101. 101.
    Bejarano, J., Caviedes, P., Palza, H.: Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed. Mater. 10, 025001 (2015). doi: 10.1088/1748-6041/10/2/025001 CrossRefGoogle Scholar
  102. 102.
    Hoppe, A., Meszaros, R., Stähli, C., Romeis, S., Schmidt, J., Peukert, W., et al.: In vitro reactivity of Cu doped 45S5 Bioglass® derived scaffolds for bone tissue engineering. J. Mater. Chem. B 1, 5659 (2013). doi: 10.1039/c3tb21007c CrossRefGoogle Scholar
  103. 103.
    Finney, L., Vogt, S., Fukai, T., Glesne, D.: Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 36, 88–94 (2009). doi: 10.1111/j.1440-1681.2008.04969.x CrossRefGoogle Scholar
  104. 104.
    Newby, P.J., El-Gendy, R., Kirkham, J., Yang, X.B., Thompson, I.D., Boccaccini, A.R.: Ag-doped 45S5 Bioglass̄-based bone scaffolds by molten salt ion exchange: Processing and characterisation. J. Mater. Sci. Mater. Med. 22, 557–569 (2011). doi: 10.1007/s10856-011-4240-8 CrossRefGoogle Scholar
  105. 105.
    Ruparelia, J.P., Chatterjee, A.K., Duttagupta, S.P., Mukherji, S.: Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4, 707–716 (2008). doi: 10.1016/j.actbio.2007.11.006 CrossRefGoogle Scholar
  106. 106.
    Deliormanlı, A.M.: Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. (2015). doi: 10.1007/s10856-014-5368-0 Google Scholar
  107. 107.
    Mouriño, V., Newby, P., Boccaccini, A.R.: Preparation and characterization of gallium releasing 3-d alginate coated 45s5 bioglass® based scaffolds for bone tissue engineering. Adv. Eng. Mater. 12, 283–291 (2010). doi: 10.1002/adem.200980078 CrossRefGoogle Scholar
  108. 108.
    Valappil, S.P., Ready, D., Abou Neel, E.A., Pickup, D.M., O’Dell, L.A., Chrzanowski, W., et al.: Controlled delivery of antimicrobial gallium ions from phosphate-based glasses. Acta Biomater. 5, 1198–1210 (2009). doi: 10.1016/j.actbio.2008.09.019 CrossRefGoogle Scholar
  109. 109.
    Schubert, D., Dargusch, R., Raitano, J., Chan, S.W.: Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem. Biophys. Res. Commun. 342, 86–91 (2006). doi: 10.1016/j.bbrc.2006.01.129 CrossRefGoogle Scholar
  110. 110.
    Horie, M., Nishio, K., Kato, H., Fujita, K., Endoh, S., Nakamura, A., et al.: Cellular responses induced by cerium oxide nanoparticles: Induction of intracellular calcium level and oxidative stress on culture cells. J. Biochem. 150, 461–471 (2011). doi: 10.1093/jb/mvr081 CrossRefGoogle Scholar
  111. 111.
    Hu, Y., Du, Y., Jiang, H., Jiang, G.: Cerium promotes bone marrow stromal cells migration and osteogenic differentiation via Smad1/ 5/ 8 signaling pathway. Int. J. Clin. Exp. Pathol. 7, 5369–5378 (2014)Google Scholar
  112. 112.
    Lin, W., Huang, Y.-W., Zhou, X.-D., Ma, Y.: Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int. J. Toxicol. 25, 451–457 (2015). doi: 10.1080/10915810600959543 CrossRefGoogle Scholar
  113. 113.
    Karakoti, A.S., Tsigkou, O., Yue, S., Lee, P.D., Stevens, M.M., Jones, J.R., et al.: Rare earth oxides as nanoadditives in 3-D nanocomposite scaffolds for bone regeneration. J. Mater. Chem. 20, 8912 (2010). doi: 10.1039/c0jm01072c CrossRefGoogle Scholar
  114. 114.
    Julien, M., Khoshniat, S., Lacreusette, A., Gatius, M., Bozec, A., Wagner, E.F., et al.: Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J. Bone Miner. Res. 24, 1856–1868 (2009). doi: 10.1359/jbmr.090508 CrossRefGoogle Scholar
  115. 115.
    Saravanapavan, P., Jones, J.R., Pryce, R.S., Hench, L.L.: Bioactivity of gel-glass powders in the CaO–SiO2 system: a comparison with ternary (CaO–P2O5–SiO2) and quaternary glasses (SiO2–CaO–P2O5–Na2O). J Biomed Mater Res A 66, 110–119 (2003). doi: 10.1002/jbm.a.10532 CrossRefGoogle Scholar
  116. 116.
    Bolsover, S.R.: Calcium signalling in growth cone migration. Cell Calcium 37, 395–402 (2005). doi: 10.1016/j.ceca.2005.01.007 CrossRefGoogle Scholar
  117. 117.
    Yu, B., Poologasundarampillai, G., Turdean-Ionescu, C., Smith, M.E., Jones, J.R.: A new calcium source for bioactive sol–gel hybrids. Bioceram. Dev. Appl. 1, 1–3 (2011). doi: 10.4303/bda/D110178 CrossRefGoogle Scholar
  118. 118.
    Yu, B., Turdean-Ionescu, C.A., Martin, R.A., Newport, R.J., Hanna, J.V., Smith, M.E., et al.: Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28, 17465–17476 (2012). doi: 10.1021/la303768b CrossRefGoogle Scholar
  119. 119.
    Newport, R.J., Skipper, L.J., Carta, D., Pickup, D.M., Sowrey, F.E., Smith, M.E., et al.: The use of advanced diffraction methods in the study of the structure of a bioactive calcia: Silica sol–gel glass. J. Mater. Sci. Mater. Med. 17, 1003–1010 (2006). doi: 10.1007/s10856-006-0436-8 CrossRefGoogle Scholar
  120. 120.
    Pereira, M.M., Clark, A.E., Hench, L.L.: Homogeneity of bioactive sol–gel-derived glasses in the system CaO–P2O5–SiO2.pdf. J. Mater. Synth. Process. 2, 189–195 (1994)Google Scholar
  121. 121.
    Li, A., Shen, H., Ren, H., Wang, C., Wu, D., Martin, R.A., et al.: Bioactive organic/inorganic hybrids with improved mechanical performance. J. Mater. Chem. B 3, 1379–1390 (2015). doi: 10.1039/C4TB01776E CrossRefGoogle Scholar
  122. 122.
    Shah, F.A., Brauer, D.S., Hill, R.G., Hing, K.A.: Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Mater. Lett. 153, 143–147 (2015). doi: 10.1016/j.matlet.2015.04.013 CrossRefGoogle Scholar
  123. 123.
    Fredholm, Y.C., Karpukhina, N., Law, R.V., Hill, R.G.: Strontium containing bioactive glasses: glass structure and physical properties. J. Non Cryst. Solids 356, 2546–2551 (2010). doi: 10.1016/j.jnoncrysol.2010.06.078 CrossRefGoogle Scholar
  124. 124.
    Goel, A., Rajagopal, R.R., Ferreira, J.M.F.: Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2-P2O5-CaF2 glasses. Acta Biomater. 7, 4071–4080 (2011). doi: 10.1016/j.actbio.2011.06.047 CrossRefGoogle Scholar
  125. 125.
    Isaac, J., Nohra, J., Lao, J., Jallot, E., Nedelec, J.M., Berdal, A., et al.: Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur. Cells Mater. 21, 130–143 (2011)Google Scholar
  126. 126.
    O’Donnell, M.D., Hill, R.G.: Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater. 6, 2382–2385 (2010). doi: 10.1016/j.actbio.2010.01.006 CrossRefGoogle Scholar
  127. 127.
    Zhang, W., Shen, Y., Pan, H., Lin, K., Liu, X., Darvell, B.W., et al.: Effects of strontium in modified biomaterials. Acta Biomater. 7, 800–808 (2011). doi: 10.1016/j.actbio.2010.08.031 CrossRefGoogle Scholar
  128. 128.
    Aina, V., Malavasi, G., Fiorio Pla, A., Munaron, L., Morterra, C.: Zinc-containing bioactive glasses: Surface reactivity and behaviour towards endothelial cells. Acta Biomater. 5, 1211–1222 (2009). doi: 10.1016/j.actbio.2008.10.020 CrossRefGoogle Scholar
  129. 129.
    Zhang, X.F., Kehoe, S., Adhi, S.K., Ajithkumar, T.G., Moane, S., O’Shea, H., et al.: Composition-structure-property (Zn2+ and Ca2+ ion release) evaluation of Si–Na–Ca–Zn–Ce glasses: potential components for nerve guidance conduits. Mater. Sci. Eng., C 31, 669–676 (2011). doi: 10.1016/j.msec.2010.12.016 CrossRefGoogle Scholar
  130. 130.
    Anand, V., Singh, K.J., Kaur, K.: Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer. J. Non Cryst. Solids 406, 88–94 (2014). doi: 10.1016/j.jnoncrysol.2014.09.050 CrossRefGoogle Scholar
  131. 131.
    Oki, A., Parveen, B., Hossain, S., Adeniji, S., Donahue, H.: Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J. Biomed. Mater. Res. A 69, 216–221 (2004). doi: 10.1002/jbm.a.20070 CrossRefGoogle Scholar
  132. 132.
    Haimi, S., Gorianc, G., Moimas, L., Lindroos, B., Huhtala, H., Räty, S., et al.: Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater. 5, 3122–3131 (2009). doi: 10.1016/j.actbio.2009.04.006 CrossRefGoogle Scholar
  133. 133.
    Rude, R.K., Gruber, H.E., Wei, L.Y., Frausto, A., Mills, B.G.: Magnesium deficiency: Effect on bone and mineral metabolism in the mouse. Calcif. Tissue Int. 72, 32–41 (2003). doi: 10.1007/s00223-001-1091-1 CrossRefGoogle Scholar
  134. 134.
    Maier, J.A.M., Bernardini, D., Rayssiguier, Y., Mazur, A.: High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim. Biophys. Acta Mol. Basis Dis. 1689, 6–12 (2004). doi: 10.1016/j.bbadis.2004.02.004 CrossRefGoogle Scholar
  135. 135.
    Dietrich, E., Oudadesse, H., Lucas-Girot, A., Mami, M.: In vitro bioactivity of melt-derived glass 46S6 doped with magnesium. J. Biomed. Mater. Res. A 88, 1087–1096 (2009). doi: 10.1002/jbm.a.31901 CrossRefGoogle Scholar
  136. 136.
    Jallot, E.: Role of magnesium during spontaneous formation of a calcium phosphate layer at the periphery of a bioactive glass coating doped with MgO. Appl. Surf. Sci. 211, 89–95 (2003). doi: 10.1016/S0169-4332(03)00179-X CrossRefGoogle Scholar
  137. 137.
    Saboori, A., Rabiee, M., Moztarzadeh, F., Sheikhi, M., Tahriri, M., Karimi, M.: Synthesis, characterization and in vitro bioactivity of sol–gel-derived SiO2–CaO–P2O5–MgO bioglass. Mater. Sci. Eng. C 29, 335–340 (2009). doi: 10.1016/j.msec.2008.07.004 CrossRefGoogle Scholar
  138. 138.
    Imani Fooladi, A.A., Hosseini, H.M., Hafezi, F., Hosseinnejad, F., Nourani, M.R.: Sol–gel-derived bioactive glass containing SiO2–MgO–CaO–P2O5 as an antibacterial scaffold. J. Biomed. Mater. Res. A 101A, 1582–1587 (2013). doi: 10.1002/jbm.a.34464 CrossRefGoogle Scholar
  139. 139.
    Landi, E., Logroscino, G., Proietti, L., Tampieri, A., Sandri, M., Sprio, S.: Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behaviour. J. Mater. Sci. Mater. Med. 19, 239–247 (2008). doi: 10.1007/s10856-006-0032-y CrossRefGoogle Scholar
  140. 140.
    Miola, M., Brovarone, C.V., Maina, G., Rossi, F., Bergandi, L., Ghigo, D., et al.: In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater. Sci. Eng., C 38, 107–118 (2014). doi: 10.1016/j.msec.2014.01.045 CrossRefGoogle Scholar
  141. 141.
    Bae, Y.J., Kim, M.H.: Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biol. Trace Elem. Res. 124, 28–34 (2008). doi: 10.1007/s12011-008-8119-6 CrossRefGoogle Scholar
  142. 142.
    Culotta, V.C., Yang, M., Hall, M.D.: Manganese transport and trafficking: lessons learned from. Society 4, 1159–1165 (2005). doi: 10.1128/EC.4.7.1159 Google Scholar
  143. 143.
    Lüthen, F., Bulnheim, U., Müller, P.D., Rychly, J., Jesswein, H., Nebe, J.G.B.: Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol. Eng. 24, 531–536 (2007). doi: 10.1016/j.bioeng.2007.08.003 CrossRefGoogle Scholar
  144. 144.
    Sopyan, I., Ramesh, S., Nawawi, N.A., Tampieri, A., Sprio, S.: Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics. Ceram. Int. 37, 3703–3715 (2011). doi: 10.1016/j.ceramint.2011.06.033 CrossRefGoogle Scholar
  145. 145.
    Beattie, J.H., Avenell, A.: Trace element nutrition and bone metabolism. Nutr. Res. Rev. 5, 167–188 (1992). doi: 10.1079/NRR19920013 CrossRefGoogle Scholar
  146. 146.
    Landete-Castillejos, T., Currey, J.D., Estevez, J.A., Fierro, Y., Calatayud, A., Ceacero, F., et al.: Do drastic weather effects on diet influence changes in chemical composition, mechanical properties and structure in deer antlers? Bone 47, 815–825 (2010). doi: 10.1016/j.bone.2010.07.021 CrossRefGoogle Scholar
  147. 147.
    Pabbruwe, M.B., Standard, O.C., Sorrell, C.C., Howlett, C.R.: Bone formation within alumina tubes: effect of calcium, manganese, and chromium dopants. Biomaterials 25, 4901–4910 (2004). doi: 10.1016/j.biomaterials.2004.01.005 CrossRefGoogle Scholar
  148. 148.
    Bracci, B., Torricelli, P., Panzavolta, S., Boanini, E., Giardino, R., Bigi, A.: Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings. J. Inorg. Biochem. 103, 1666–1674 (2009). doi: 10.1016/j.jinorgbio.2009.09.009 CrossRefGoogle Scholar
  149. 149.
    Simonsen, L.O., Harbak, H., Bennekou, P.: Cobalt metabolism and toxicology-A brief update. Sci. Total Environ. 432, 210–215 (2012). doi: 10.1016/j.scitotenv.2012.06.009 CrossRefGoogle Scholar
  150. 150.
    Quinlan, E., Partap, S., Azevedo, M.M., Jell, G., Stevens, M.M., O’Brien, F.J.: Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials 52, 358–366 (2015). doi: 10.1016/j.biomaterials.2015.02.006 CrossRefGoogle Scholar
  151. 151.
    Peters, K., Schmidt, H., Unger, R.E., Kamp, G., Pröls, F., Berger, B.J., et al.: Paradoxical effects of hypoxia-mimicking divalent cobalt ions in human endothelial cells in vitro. Mol. Cell. Biochem. 270, 157–166 (2005). doi: 10.1007/s11010-005-4504-z CrossRefGoogle Scholar
  152. 152.
    Buttyan, R., Chichester, P., Stisser, B., Matsumoto, S., Ghafar, M.A., Levin, R.M.: Acute intravesical infusion of a cobalt solution stimulates a hypoxia response, growth and angiogenesis in the rat bladder. J. Urol. 169, 2402–2406 (2003). doi: 10.1097/01.ju.0000058406.16931.93 CrossRefGoogle Scholar
  153. 153.
    Kramer, E., Itzkowitz, E., Wei, M.: Synthesis and characterization of cobalt-substituted hydroxyapatite powders. Ceram. Int. 40, 13471–13480 (2014). doi: 10.1016/j.ceramint.2014.05.072 CrossRefGoogle Scholar
  154. 154.
    Srivastava, A.K., Pyare, R.: Characterization of CuO substituted 45S5 bioactive glasses and glass—ceramics. Int. J. Sci. Technol. Res. 1, 28–41 (2012)Google Scholar
  155. 155.
    Pratten, J., Nazhat, S.N., Blaker, J.J., Boccaccini, A.R.: In vitro attachment of Staphylococcus epidermidis to surgical sutures with and without Ag-containing bioactive glass coating. J. Biomater. Appl. 19, 47–57 (2004). doi: 10.1177/0885328204043200 CrossRefGoogle Scholar
  156. 156.
    Hu, G., Xiao, L., Tong, P., Bi, D., Wang, H., Ma, H., et al.: Antibacterial hemostatic dressings with nanoporous bioglass containing silver. Int. J. Nanomed. 7, 2613–2620 (2012). doi: 10.2147/IJN.S31081 CrossRefGoogle Scholar
  157. 157.
    Simon, V.: Addressing the optimal silver content in bioactive glass systems in terms of BSA adsorption. J. Mater. Chem. (2014). doi: 10.1039/C4TB00733F Google Scholar
  158. 158.
    Pickup, D.M., Moss, R.M., Qiu, D., Newport, R.J., Valappil, S.P., Knowles, J.C., et al.: Structural characterization by X-ray methods of novel antimicrobial gallium-doped phosphate-based glasses. J. Chem. Phys. (2009). doi: 10.1063/1.3076057 Google Scholar
  159. 159.
    Salinas, A.J., Shruti, S., Malavasi, G., Menabue, L., Vallet-Regí, M.: Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 7, 3452–3458 (2011). doi: 10.1016/j.actbio.2011.05.033 CrossRefGoogle Scholar
  160. 160.
    Zhang, J., Zhu, Y.: Synthesis and characterization of CeO2-incorporated mesoporous calcium-silicate materials. Microporous Mesoporous Mater. 197, 244–251 (2014). doi: 10.1016/j.micromeso.2014.06.018 CrossRefGoogle Scholar
  161. 161.
    Das, S., Dowding, J.M., Klump, K.E., McGinnis, J.F., Self, W., Seal, S.: Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8, 1483–1508 (2013). doi: 10.2217/nnm.13.133 CrossRefGoogle Scholar
  162. 162.
    Leonelli, C., Lusvardi, G., Malavasi, G., Menabue, L., Tonelli, M.: Synthesis and characterization of cerium-doped glasses and in vitro evaluation of bioactivity. J. Non Cryst. Solids 316, 198–216 (2003). doi: 10.1016/S0022-3093(02)01628-9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Breno Rocha Barrioni
    • 1
  • Agda Aline Rocha de Oliveira
    • 2
  • Marivalda de Magalhães Pereira
    • 1
    Email author
  1. 1.Department of Metallurgical Engineering and Materials, School of EngineeringFederal University of Minas Gerais (UFMG)Belo HorizonteBrazil
  2. 2.JHS BiomateriaisSabaráBrazil

Personalised recommendations