Advertisement

Structure and Percolation of Bioglasses

  • Antonio Carlos da SilvaEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)

Abstract

The bioactive glasses are functional materials with large and growing technological applications in the production of implantable devices in living organisms as well as bone tissue lesions filling or in some applications in soft tissue. Anyway, play a key role in repair and functional recovery surgical techniques for different host organism parts (human organisms in general, but extends to other organisms, especially mammals). As the first commercial bioglass, the 45S5 still represent the primary focus of study and applications for this type of material and hence it and other similar compositions it will be the reference used in present discussion because in general, the bioglass structure understanding and it’s dissolution and ionic transport mechanisms comprehension is applicable to other bioactive materials.

Keywords

Bioactive Glass Glass Composition Glass Structure Glass Network Dissolution Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sperb, L.C.M., Neves, A.C.C., et al.: Considerações Sobre Prótese Ocular Sua Importância na Odontologia Atual. RGO 49, 202 (2001)Google Scholar
  2. 2.
    Siqueira, R.L., Zanotto, E.D.: Biosilicato®: Histórico de uma vitrocerâmica brasileira de elevada bioatividade. Quim. Nova 34, 1231 (2011)CrossRefGoogle Scholar
  3. 3.
    Boccaccini, A.R., Gough, J.E.: Tissue Engineering Using Ceramics and Polymers. CRC Press, New York (2007)CrossRefGoogle Scholar
  4. 4.
    Hench, L.L.: Bioceramics. J. Am. Ceram. Soc. 81, 1705–1728 (1998)CrossRefGoogle Scholar
  5. 5.
    Salinas, A.J., Vallet-Regí, M., et al.: Evolution of ceramics with medical applications. Z. Anorg. Allg. Chem. 633, 1762–1773 (2007)CrossRefGoogle Scholar
  6. 6.
    Hench, L.L.: The story of bioglass. J. Mater. Sci. Mater. Med. 17, 967–978 (2006)CrossRefGoogle Scholar
  7. 7.
    Paul, A.: Chemistry of Glasses. Chapman and Hall, Londres (1982)CrossRefGoogle Scholar
  8. 8.
    Hench, L.L., Clark, D.E.: Physical chemistry of glass surfaces. J. Non Cryst. Solids 28, 83–105 (1978)CrossRefGoogle Scholar
  9. 9.
    Hench, L.L.: Biomaterials: a forecast for the future. Biomaterials 19, 1419–1423 (1998)CrossRefGoogle Scholar
  10. 10.
    Xynos, I.D., Edgar, A.J., et al.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J. Biomed. Mater. Res. 55, 151–157 (2001)CrossRefGoogle Scholar
  11. 11.
    Tsigkou, O., Jones, J., Polak, R., et al.: Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterial 30, 3542–3550 (2009)CrossRefGoogle Scholar
  12. 12.
    Hench, L.L., Wheeler, D.L., et al.: Greenspan, molecular control of bioactivity in sol–gel glasses. J. Sol Gel. Sci. Technol. 13, 245–250 (1998)CrossRefGoogle Scholar
  13. 13.
    Bosetti, M., Cannas, M.: Bioactive glasses induces bone marrow stromal cells differentiation. Biomaterials 26, 3873–3879 (2005)CrossRefGoogle Scholar
  14. 14.
    Jones, J.R., Gentleman, E., et al.: Bioactive glass scaffolds for bone regeneration. Elements 3, 393–399 (2007)CrossRefGoogle Scholar
  15. 15.
    Kokubo, T.: Bioceramics and Their Clinical Applications. CRC Press, Boca Raton (2008)CrossRefGoogle Scholar
  16. 16.
    Hench, L.L., Polak, J.M.: Third generation biomaterials. Science 295, 1014–1017 (2002)CrossRefGoogle Scholar
  17. 17.
    Tilocca, A.: Models of structure, dynamics and reactivity of bioglasses: a review. J. Mater. Chem. 20, 6848–6858 (2010)CrossRefGoogle Scholar
  18. 18.
    Chevalier, J., Gremillard, L.: Ceramics for medical applications: a picture for the next 20 years. J. Eur. Ceram. Soc. 29, 1245–1255 (2009)CrossRefGoogle Scholar
  19. 19.
    Kawachi, E.Y., Bertran, C.A.: Biocerâmicas: Tendências e perspectivas de uma área interdisciplinar, Quim. Nova 23, 518–522 (2000)Google Scholar
  20. 20.
    Zachariasen, W.H.: The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841–3851 (1932)CrossRefGoogle Scholar
  21. 21.
    Navarro, J.M.F.: El Vidrio, 3ª ed. Madrid, Consejo Superior de Invest. Científicas - Fundacion Centro Nacional del Vidrio (2003)Google Scholar
  22. 22.
    Kirk and Othmer (1994) In: Boyd, D.C., Danielson, P.S., et al. (eds.) Glass Encyclopedia of Chemical Technology, vol. 12, pp. 555–627Google Scholar
  23. 23.
    Van Vlack, L.H.: Princípios de Ciências dos Materiais. Edgard Blücher Ltda, São Paulo (1998)Google Scholar
  24. 24.
    Delaye, J.M., Ghaleb, D.: Molecular dynamics Simulation of SiO2 + B2O3 + Na2O + ZrO2 glass. J. Non-Cryst. Solids 195, 239–248 (1996)CrossRefGoogle Scholar
  25. 25.
    Jiawei, S., Kwansik, C., et al.: Vitrification of liquid waste from nuclear power plants. J. Nucl. Mater. 297, 7–13 (2001)CrossRefGoogle Scholar
  26. 26.
    Kingery, W.D., Bowen, H.K., et al.: Introduction to Ceramics, 2nd edn. John Wiley & Sons, New York (1976)Google Scholar
  27. 27.
    Mysen, B.O.: Transport and configurational properties of silicate melts: relationship to melt structure at magmatic temperatures. Phys. Earth Planet. Inter. 107, 23–32 (1998)CrossRefGoogle Scholar
  28. 28.
    Sen, S., Youngman, R.E.: NMR study of Q-speciation and connectivity in K2O-SiO2 glasses with high silica content. J. Non-Cryst. Solids 331, 100–1007 (2003)CrossRefGoogle Scholar
  29. 29.
    Gedeon, O., Liska, M., et al.: Connectivity of Q-species in binary sodium-silicate glasses. J. Non Cryst. Solids 354, 1133–1136 (2008)CrossRefGoogle Scholar
  30. 30.
    Hill, R.G.: An alternative view of the degradation of Bioglass. J. Mater. Sci. Lett. 15, 1122–1125 (1996)CrossRefGoogle Scholar
  31. 31.
    Strnad, Z.: Role of glass phase in bioactive glass-ceramics. Biomaterials 13, 317–321 (1992)CrossRefGoogle Scholar
  32. 32.
    Arcos, D., Greesnpan, D.C.: Influence of the stabilization temperature on textural and structural features and ion release in SiO2–CaO–P2O5 sol–gel glasses. Chem. Mater. 14, 1515–1522 (2002)CrossRefGoogle Scholar
  33. 33.
    Beall, G.H., Pinckney, L.R.: Nanophase glass-ceramics. J. Am. Ceram. Soc. 82, 5–16 (1999)CrossRefGoogle Scholar
  34. 34.
    Calas, G., Cormier, L.: Structure–property relationships in multicomponent oxide glasses. Chimie 5, 831–843 (2002)CrossRefGoogle Scholar
  35. 35.
    Silva, A.C.: Vidros e vitrocerâmicos com alta concentração de metais a partir de resíduos industriais (Doctoral tesis, Universidade de São Paulo), Brazil (2008)Google Scholar
  36. 36.
    Holland, D.Mekki, et al.: The structure of sodium iron silicate glass—a multi-technique approach. J. Non-Cryst. Solids 253, 192–202 (1999)CrossRefGoogle Scholar
  37. 37.
    Pinakidou, F., Katsikini, M., et al.: Structural role and coordination environment of Fe in Fe2O3–PbO–SiO2–Na2O composite glasses. J. Non-Cryst. Solids 354, 105–111 (2008)CrossRefGoogle Scholar
  38. 38.
    Mekki, A., Holland, D., et al.: An XPS study of iron sodium glass surfaces. J. Non-Cryst. Solids 208, 267–276 (1996)CrossRefGoogle Scholar
  39. 39.
    Bevilacqua, A.M., Bernasconi, N.B., et al.: A. Immobilization of simulated high-level liquid wastes in sintered borosilicate, aluminosilicate and aluminoborosilicate glasses. J. Nucl. Mater. 229, 187–193 (1996)CrossRefGoogle Scholar
  40. 40.
    Abraitis, P.K., Mcgrail, B.P., et al.: Single-pass flow-though experiments on a simulated waste glass in alkaline media at 40 °C. I—Experiments conducted at variable flow rate to glass surface and ratio. J. Nucl. Mater. 280, 196–205 (2000)CrossRefGoogle Scholar
  41. 41.
    Eaz-Eldin, F.M.: Leaching and mechanical properties of cabal glasses developed as matrices for immobilization high-level wastes. Nucl. Instrum. Methods Phys. Res. 183, 285–300 (2001)CrossRefGoogle Scholar
  42. 42.
    Erol, M., Kucukbayrak, S., et al.: Crystallization behavior of glasses produced from fly ash. J. Eur. Ceram. Soc. 21, 2835–2841 (2001)CrossRefGoogle Scholar
  43. 43.
    Sheng, J., Lou, S., et al.: The leaching behavior of borate waste glass SL-1. Waste Manag 19, 401–407 (1999)CrossRefGoogle Scholar
  44. 44.
    Peret, D., Crosivier, J.L., et al.: Thermodynamic stability of waste glasses compared to leaching behavior. Appl. Geochem. 18, 1165–1184 (2003)CrossRefGoogle Scholar
  45. 45.
    Newton, R.G., Paul, A.: A new approach to predicting the durability of glasses from their chemical compositions. Glass Techol. 21, 307–309 (1980)Google Scholar
  46. 46.
    Newton, R.G.: The durability of glass. Glass Techol. 26, 21–38 (1985)Google Scholar
  47. 47.
    Spence, R.D., Gilliam, T.M., et al.: Laboratory stabilization/solidification of surrogate and actual mixed-waste sludge in glass and grout. Waste Manag. 19, 453–465 (1999)CrossRefGoogle Scholar
  48. 48.
    Feng, X., Pegg, I.L.: A glass dissolution model for the effects of S/V on leachate pH. J. Non-Cryst. Solids 175, 281–293 (1994)CrossRefGoogle Scholar
  49. 49.
    Hamilton, J.P., Pantano, C.G.: Effects of glass structure on the corrosion behavior of sodium-aluminosilicate glasses. J. Non-Cryst. Solids 222, 167–174 (1997)CrossRefGoogle Scholar
  50. 50.
    Koenderink, R.H., Brzesowsky, R.H., et al.: Effect of the initial stages of leaching on the surface of alkaline earth sodium silicate glasses. J. Non-Cryst. Solids 262, 80–98 (2000)CrossRefGoogle Scholar
  51. 51.
    Sigoli, F.A., Kawano, Y., et al.: Phase separation in pyrex glass by hydrothermal treatment: Evidence from micro-raman spectroscopy. J. Non-Cryst. Solids 284, 49–59 (2001)CrossRefGoogle Scholar
  52. 52.
    Cooper, C.I., Cox, G.A.: The aqueous corrosion of potash-lime-silica glass in the range 10–250 °C. Appl. Geochem. 11, 511–521 (1996)CrossRefGoogle Scholar
  53. 53.
    Yan, J., Neretnieks, I.: Is the glass phase rate always a limiting factor in the leaching processes of combustion residues? Sci. Total Environ. 172, 95–118 (1995)CrossRefGoogle Scholar
  54. 54.
    Zamet, S., Darbar, U.R., et al.: Particulate bioglass as a grafting material in the treatment of periodontal intrabony defects. J. Clin. Periodontol. 24, 410–418 (1997)CrossRefGoogle Scholar
  55. 55.
    Allan, I., Newsam, H., et al.: Antibacterial activity of particulate bioglass against supra- and subgingival bacteria. Biomaterials 22, 1683–1687 (2001)CrossRefGoogle Scholar
  56. 56.
    Moya, J.S., Esteban-Tejeda, L., et al.: Glass powders with a high content of calcium oxide: a step towards a “green” universal biocide. Adv. Eng. Mater. 13(6), B256–B260 (2011)CrossRefGoogle Scholar
  57. 57.
    Moya, J.S., Cabal, B., et al.: Mechanism of calcium lixiviation in soda-lime glasses with a strong biocide activity. Mater. Lett. 70, 113–115 (2012)CrossRefGoogle Scholar
  58. 58.
    Silva, A.C.: Incorporação de resíduo galvânico em vidro silicato obtido a partir de finos de sílica (Master degree dissertation, Universidade de São Paulo), Brazil (2004)Google Scholar
  59. 59.
    Esteban-Tejeda, L., Silva, A.C., et al.: Kinetics of dissolution of a biocide soda-lime glass powder containing silver nanoparticles. J. Nanopart. Res. 15(2), 1–6 (2013)CrossRefGoogle Scholar
  60. 60.
    Bolis, V., Fubini, B., et al.: Hydrophilic and hydrophobic sites on dehydrated crystalline and amorphous silicas. J. Chem. Soc., Faraday Trans. 87, 497–505 (1991)CrossRefGoogle Scholar
  61. 61.
    Hassanali, A.A., Singer, S.J.: Model for the water-amorphous silica interface: the undissociated surface. J. Phys. Chem. B 111, 11181–111193 (2007)CrossRefGoogle Scholar
  62. 62.
    Tilocca, A., Cormack, A.N.: Structural effects of phosphorus inclusion in bioactive silicate glasses. J. Phys. Chem. B 111, 14256–14264 (2007)CrossRefGoogle Scholar
  63. 63.
    Wu, H.F., Lin, C.C., et al.: Structure and dissolution of CaO-ZrO2–TiO2–AI2O3–B2O3–SiO2 glass (II). J. Non-Cryst. Solids 209, 76–86 (1997)CrossRefGoogle Scholar
  64. 64.
    Tilocca, A., Cormack, A.N., et al.: Structure and dynamics of bioactive phosphosilicate glasses and melts from ab initio molecular dynamics simulation. Chem. Mater. 19, 95 (2007)CrossRefGoogle Scholar
  65. 65.
    Jund, P., Kob, W.: Channel diffusion of sodium in a silicate glass. Phys. Rev. B: Condens. Matter 64, 134303–134313 (2001)CrossRefGoogle Scholar
  66. 66.
    Mead, R.N., Mountjoy, G.: A molecular dynamics study of the atomic structure of (CaO)x(SiO2)1-x glasses. J. Phys. Chem. B 110, 14273–14278 (2006)CrossRefGoogle Scholar
  67. 67.
    Huang, C., Cormack, A.N.: Structural differences and phase separation in alkali silicate glasses. J. Chem. Phys. 95, 3634–3642 (1991)CrossRefGoogle Scholar
  68. 68.
    Tilocca, A., Cormack, A.N.: The effect of nano scale inhomogeneity and silicate network connectivity on the activity of glasses with biological applications. Nuevo Cimento B 123, 1415–1423 (2008)Google Scholar
  69. 69.
    Oonishi, H., Hench, L.L., et al.: Comparative bone growth behavior in granules of bioceramic materials of various sizes. J. Biomed. Mater. Res. 44, 31–43 (1999)CrossRefGoogle Scholar
  70. 70.
    Oonishi, H., Hench, L.L., et al.: Quantitative comparison of bone growth behavior in granules of bioglass, AW glass-ceramic, and hydroxyapatite. Biomed. Mater. Res. 51, 37–48 (2000)CrossRefGoogle Scholar
  71. 71.
    Wilson, J., Yli-Urpo, A., et al.: In: Hench, L.L., Wilson, J. (eds.) An Introduction to Bioceramics. World Scientific, Singapore, pp. 63–73 (1993)Google Scholar
  72. 72.
    Cao, W., Hench, L.L.: Bioactive materials. Ceram. Int. 22, 493–507 (1996)CrossRefGoogle Scholar
  73. 73.
    Mischler, C., Horbach, J., et al.: Water adsorption on amorphous silica surfaces: a Car-Parrinello simulation study. Phys. Condens. Matter. 17, 4005–4013 (2005)CrossRefGoogle Scholar
  74. 74.
    Masini, P., Bernasconi, M.J.: Ab initio simulations of hydroxylation and dehydroxylation reactions at surfaces: amorphous silica and brucite. Phys. Condens. Matter. 14, 4133–4144 (2002)CrossRefGoogle Scholar
  75. 75.
    Bunker, B.C., Haaland, D.M., et al.: Kinetics of dissociative chemisorption on strained edge-shared surface defects on dehydroxylated silica. Surf. Sci. 222, 95–118 (1988)CrossRefGoogle Scholar
  76. 76.
    Walsh, T.R., Wilson, M., et al.: Hydrolysis of the amorphous silica surface. II. Calculation of activation barriers and mechanisms. J. Chem. Phys. 113, 9191–9201 (2000)CrossRefGoogle Scholar
  77. 77.
    West, J.K., Wallace, S.: Interactions of water with trisiloxane rings. I. Experimental analysis. J. Non-Cryst. Solids 152, 101–108 (1993)CrossRefGoogle Scholar
  78. 78.
    Wallace, S., West, J.K., et al.: Interactions of water with trisiloxane rings II. J. Non-Cryst. Solids 152, 109–117 (1995)Google Scholar
  79. 79.
    Hench, L.L., West, J.K.: Molecular orbital models of silica. Annu. Rev. Mater. Sci. 25, 37–68 (1995)CrossRefGoogle Scholar
  80. 80.
    Nogues, J.L., Vernuz, E.Y., et al.: Nuclear glass corrosion mechanism applied to the French LWR reference glass. Mater. Res. Soc. 44, 89–98 (1985)CrossRefGoogle Scholar
  81. 81.
    Huang, W., Day, D.E., et al.: Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solution. J. Mater. Sci. Mater. Med. 17, 583–596 (2006)CrossRefGoogle Scholar
  82. 82.
    Rahaman, M.N., Day, D.E., et al.: Bioactive glass in tissue engineering. Acta Biomater. 7, 2355–2373 (2011)CrossRefGoogle Scholar
  83. 83.
    Yao, A., Wang, D.P., et al.: In vitro bioactive characteristics of borate based glasses with controllable degradation behavior. J. Am. Ceram. Soc. 90, 303–306 (2007)CrossRefGoogle Scholar
  84. 84.
    Fu, Q., Rahaman, M.N., et al.: Bioactive scaffolds with controllable degradation rates for bone tissue engineering applications. I. Preparation and in vitro degradation. J. Biomed. Mater. Res. 95A, 164–171 (2010)CrossRefGoogle Scholar
  85. 85.
    Hench, L.L., Splinter, R.J., et al.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5, 117–141 (1971)CrossRefGoogle Scholar
  86. 86.
    Kokubo, T., Kim, H.M., et al.: Novel bioactive materials with different mechanical properties. Biomaterials 24, 2161–2175 (2003)CrossRefGoogle Scholar
  87. 87.
    Duccheyne, P., Qiu, Q.: Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials 20, 2287–2303 (1999)CrossRefGoogle Scholar
  88. 88.
    LeGeros, R.Z., LeGeros, J.P.: Phosphate minerals in human tissues. In: Nriogu, J.O., Moore, P.B. (eds.) Phosphate Minerals, p. 351. Springer-Verlag, Berlin (1984)CrossRefGoogle Scholar
  89. 89.
    Rahaman, M.N., Day, D.E., Brown, R.F., Fu, Q., Jung, S.B.: Nanostructured bioactive glass scaffolds for bone repair. Ceram. Eng. Sci. Proc. 29, 211 (2008)CrossRefGoogle Scholar
  90. 90.
    Day, D.E., White, J.E., et al.: Transformation of borate glasses into biologically useful materials. Glass Technol. Part A 44, 75–81 (2003)Google Scholar
  91. 91.
    Conzone, S.D., Day, D.E.: Preparation and properties of porous microspheres made form borate glass. J. Biomed. Mater. Res. 88A, 531–542 (2009)CrossRefGoogle Scholar
  92. 92.
    Wang, Q., Huang, W., et al.: Preparation of hollow hydroxyapatite microspheres. J. Mater. Sci. Mater. Med. 17, 641–646 (2006)CrossRefGoogle Scholar
  93. 93.
    Huang, W., Rahaman, M.N., et al.: Strength of hollow hydroxyapatite microspheres prepared by a glass conversion process. J. Mater. Sci. Mater. Med. 20, 123–129 (2009)CrossRefGoogle Scholar
  94. 94.
    Fu, H., Rahaman, M.N., et al.: Effect of process parameters on the microstructure of hollow hydroxyapatite microspheres prepared by a glass conversion method. J. Am. Ceram. Soc. 93, 3116–3123 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.São PauloBrazil

Personalised recommendations