Advertisement

Glasses for Treatment of Liver Cancer by Radioembolization

  • Oana Bretcanu
  • Iain Evans
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)

Abstract

This chapter presents an overview of existing commercial and potential (non-commercially available) glasses used for the treatment of liver cancer by radioembolization therapy. The chapter explains how radioembolization works and the required properties of the glass particles used for radioembolization. A short description of the properties and method of synthesis for commercial glasses, TheraSpheres®, together with their clinical benefits, risks and limitations are reported. Two non-commercial glasses were considered: phosphate glasses containing 32P radioisotope and borate glasses containing 186Re and 188Re radioisotopes. Their fabrication methods and properties were compared to those of the commercial glass.

Keywords

Glass Liver cancer Radioembolization Radioactive microspheres Radioisotopes 

References

  1. 1.
    Cancer Fact Sheet 297. World Health Organisation. http://www.who.int/mediacentre/factsheets/fs297/en. Accessed 18 Sept 2016
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    Kennedy, A.S., Dezarn, W.A., McNeillie, P.: Chapter 1: 90Y microspheres: Concepts and Principles. In: Bilbao, J.I, Reiser, M.F. (eds.) Liver Radioembolization with 90Y Microspheres, pp. 1–10. Springer, Berlin, Heidelberg (2013)Google Scholar
  6. 6.
    Kennedy, A.S.: Radioactive microspheres for liver cancers. US Oncol. Rev. 1(1), p25–p28 (2005)Google Scholar
  7. 7.
  8. 8.
  9. 9.
    Murthy, R., Kamat, P., Nunez, R., Salem, R.: Radioembolization of Yttrium-90 microspheres for hepatic malignancy. Semin. Interv. Radiol. 25(1), 48–57 (2008)CrossRefGoogle Scholar
  10. 10.
    Kawashita, M., Shineha, R., Kim, H.-M., Kokubo, T., Inoue, Y., Araki, N., Nagata, Y., Hiraoka, M., Sawada, Y.: Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials 24, 2955–2963 (2003)CrossRefGoogle Scholar
  11. 11.
    Kovziridze, Z., Khorava, P., Mitskevich, N.: Controlled local hyperthermia and magnetic hyperthermia of surface (skin) cancer diseases. J. Cancer Ther. 4, 1262–1271 (2013)CrossRefGoogle Scholar
  12. 12.
    Erbe, E.M., Day, D.E.: Chemical durability of Y2O3–Al2O3–SiO2 glasses for the in vivo delivery of beta radiation. J. Biomed. Mater. Res. 27(10), 1301–1308 (1993)CrossRefGoogle Scholar
  13. 13.
    Welsh, J.S.: Beta radiation. Oncologist 11, 181–183 (2006)CrossRefGoogle Scholar
  14. 14.
  15. 15.
  16. 16.
    Georgiades, C.S., Salem, R., Geschwind, J.-F.: Radioactive microspheres for the treatment of HCC. In: Golzarian, J., Sun, S., Sharafuddin M.J. (eds.) Vascular Embolotherapy, pp. 141–148. Springer, Berlin, Heidelberg (2006)Google Scholar
  17. 17.
  18. 18.
    Sene, F.F., José, R.: Phosphate glass microspheres for radiotherapy applications. J. Non-cryst. Solids 354, 4887–4893 (2008)CrossRefGoogle Scholar
  19. 19.
    Guimarães, C.C., Moralles, M., Sene, F.F., Martinelli, J.R.: Dose-rate distribution of 32P-glass microspheres for intra-arterial brachytherapy. Med. Phys. 37(2), 532–539 (2010)CrossRefGoogle Scholar
  20. 20.
    Argyrou, M., Valassi, A., Andreou, M., Lyra, M.: Rhenium-188 production in hospitals, by W-188/Re-188 generator, for easy use in radionuclide therapy. Int. J. Mol. Imaging. 2013, 290750 (2013)Google Scholar
  21. 21.
    Conzone, S.D., Hafeli, U.O., Day, D.E., Ehrhardt, G.J.: Preparation and properties of radioactive rhenium glass microspheres intended for in vivo radioembolization therapy. J. Biomed. Mater. Res. 42(4), 617–625 (1998)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Mechanical and Systems EngineeringNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations