Biocompatible Glasses for Cancer Treatment

  • Renata Deliberato Aspasio
  • Roger Borges
  • Juliana MarchiEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)


Treatment of cancer is an old issue in the history of medicine. Millions cases are reported every year, as well as millions of cancer-related deaths are also registered. The development of new technologies is changing this scenario, and new cancer treatment techniques have been included in the clinical routine. Among these techniques, hyperthermia and brachytherapy have an interesting prominence. Hyperthermia has been suggested as an auxiliary therapy for cancer treatment, while brachytherapy offers the opportunity of delivering high dose beta radiation emission into the cancerous tissue. In this chapter, we pointed out the use of biocompatible glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) for cancer treatment by either hyperthermia or brachytherapy. A quick review about hyperthermia is provided, and the main compositions of biocompatible glasses used in hyperthermia are discussed regarding their magnetic and biological properties. In addition, few glasses with suitable radiological properties with potential application in prostate cancer and liver cancer are reviewed, as well as new possible glasses composition are considered from the point of view of Monte Carlo and molecular dynamics simulations.


Magnetic Phase Bioactive Glass Glass Structure Prostate Cancer Treatment 125I Seed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Nielsen, O.S., Horsman, M., Overgaard, J.: A future for hyperthermia in cancer treatment. Eur. J. Cancer 37, 1587–1589 (2001)CrossRefGoogle Scholar
  2. 2.
    Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., Schlag, E.P.M.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)CrossRefGoogle Scholar
  3. 3.
    Jiang, Y., Ou, J., Zhang, Z., Qin, Q.H.: Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects. J. Mater. Sci. Mater. Med. 22, 721–729 (2011)CrossRefGoogle Scholar
  4. 4.
    Cui, Z., et al.: Molecular mechanisms of hyperthermia-induced apoptosis enhanced by docosahexaenoic acid: Implication for cancer therapy, pp. 1–8. Chemico-Biological Interactions, Japan (2014)Google Scholar
  5. 5.
    Arcos, D., Real, P., Vallet-Regí, M.: Biphasic materials for bone grafting and hyperthermia treatment of cancer. J. Biomed. Mater. Res. A 65(1), 71–78 (2003)CrossRefGoogle Scholar
  6. 6.
    Shah, S.A., Hashmi, M.U., Alam, S., Shamim, A.: Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer. J. Magn. Magn. Mater. 322, 375–381 (2010)CrossRefGoogle Scholar
  7. 7.
    Li, J.: Physics of Tumor Hyperthermia, pp. 1–6. Science Publisher, Beijing (2008)Google Scholar
  8. 8.
    Baronzio, G.F., Hager, E.D.: Hyperthermia in Cancer Treatment: A Primer, pp. 3–4. Medical Intelligent Unit, Springer & Landes Bioscience, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Oleson, J.R., Dewhirst, M.W.: Hyperthermia: an overview of current progress and problems. Curr. Probl. Cancer 8(6), 1–62 (1983)CrossRefGoogle Scholar
  10. 10.
    Giri, J., Ray, A., Dasgupta, S., Datta, D., Bahadur, D.: Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications. Bio-Med. Mater. Eng. 13(4), 387–399 (2003)Google Scholar
  11. 11.
    Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parott, J.C., Taylor, C.B.: Selective inductive heating of lymph nodes. Ann. Surg. 146, 596–606 (1997)CrossRefGoogle Scholar
  12. 12.
    Yanase, M., Shinkai, M., Honda, H., Wakabayashi, T., Yoshida, J., Kobayashi, T.: Intracellular hyperthermia for cancer using magnetite cationic liposomes: ex vivo study. Jpn. J. Cancer Res. 88(7), 630–632 (1997)CrossRefGoogle Scholar
  13. 13.
    Mosbach, K., Anderson, L.: Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270, 259 (1997)CrossRefGoogle Scholar
  14. 14.
    Jianhua, C., Naru, Y.: Present situation of cancer hyperthermia. Mater. J. Chin. Ceram. Soc. 29, 238–244 (2001)Google Scholar
  15. 15.
    Shliomis, M.I.: Magnetic fluids. Sov. Phys. Usp. 17, 153–184 (1963)CrossRefGoogle Scholar
  16. 16.
    Hergt, R., Andrä, W., D’ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., Schmidt, H.G.: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998)CrossRefGoogle Scholar
  17. 17.
    Alcaide, M., Ramirez, S.C., Feito, M.J., De La Concepci, N., Matesanz, M., Ruiz, E.H., Arcos, D., Vallet, R.M., Portolos, M.T. In vitro evaluation of glass–glass ceramic thermoseed-induced hyperthermia on human osteosarcoma cell line. J. Biomed. Mater. Res. A 100A, 64–71 (2012)Google Scholar
  18. 18.
    Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., Riess, H.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002)CrossRefGoogle Scholar
  19. 19.
    Clavel, C.M., Nowak-Sliwinska, P., Paunescu, E., Dyson, P.J.: Thermoresponsive fluorinated small-molecule drugs: a new concept for efficient localized chemotherapy. Med. Chem. Commun. 6, 2054–2062 (2015)CrossRefGoogle Scholar
  20. 20.
    Overgaard, J.: Effect of hyperthermia on malignant cells in vivo: a review and a hypothesis. Cancer 39, 2637–2646 (1977)CrossRefGoogle Scholar
  21. 21.
    Jordan, A., Scholz, R., Wust, P., Fähling, H., Felix, R.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413–419 (1999)CrossRefGoogle Scholar
  22. 22.
    American Cancer Society. Accessed 31 March 2016
  23. 23.
    Williamson, J.F.: Brachytherapy technology and physics practice since 1950: a half-century of progress. Phys. Med. Biol. 51(13), R303–R325 (2006)CrossRefGoogle Scholar
  24. 24.
    Li, G., Feng, S., Shou, D.: Magnetic bioactive glass ceramic in the system CaO–P2O5–SiO2–MgO–CaF2–MnO2–Fe2O3 for hyperthermia treatment of bone tumor. J. Mater. Sci. Mater. Med. 22, 2197–2206 (2011)CrossRefGoogle Scholar
  25. 25.
    Pereira, M.M., Clark, A.E., Hench, L.L.: Calcium phosphate formation on sol–gel derived bioactive glasses in vitro. J. Biomed. Mater. Res. 28, 693–698 (1994)CrossRefGoogle Scholar
  26. 26.
    Vallet-Regí, M., Arcos, D., Pariente, J.: Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol–gel glasses. J. Biomed. Mater. Res. 51, 23–28 (2000)CrossRefGoogle Scholar
  27. 27.
    Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991)CrossRefGoogle Scholar
  28. 28.
    Balas, F., Arcos, D., Perez-Pariente, J., Vallet-Regí, M.: Textural properties of SiO2·CaO·P2O5 glasses prepared by the sol–gel method. J. Mater. Res. 6, 1345–1348 (2001)CrossRefGoogle Scholar
  29. 29.
    Baeza, A., Arcos, D., Vallet-Regí, M.: Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles. J. Phys.: Condens. Matter 25, 11 (2013)Google Scholar
  30. 30.
    Wang, H., Zhao, S., Zhou, J., Zhu, K., Cui, X., Huang, W., Rahman, M.N., Zhang, C., Wang, D. Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles. J. Mater. Chem. 3, 4377–4387 (2015)Google Scholar
  31. 31.
    Kokubo, T.: Bioactive glass ceramics: properties and applications. Biomaterials 12(2), 155–163 (1991)CrossRefGoogle Scholar
  32. 32.
    Da Li, G., Zhou, D.L., Lin, Y., Pan, T.H., Chen, G.S., Yin, Q.D.: Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater. Sci. Eng. C 30, 148–153 (2010)CrossRefGoogle Scholar
  33. 33.
    Eniu, D., Cacaina, D., Coldea, M., Valeanu, M., Simon, S.: Structural and magnetic properties of CaO–P2O5–SiO2–Fe2O3 glass–ceramics for hyperthermia. J. Magn. Magn. Mater. 293, 310–313 (2005)CrossRefGoogle Scholar
  34. 34.
    Singh, R.K., Kothiyal, G.P., Srinivasan, A.: Magnetic and structural properties of CaO–SiO2–P2O5–Na2O–Fe2O3 glass ceramics. J. Magn. Magn. Mater. 320, 1352–1356 (2008)CrossRefGoogle Scholar
  35. 35.
    Bretcanu, O., Verné, E., Cöisso, M., Tiberto, P., Allia, P.: Magnetic properties of the ferrimagnetic glass-ceramics for hyperthermia. J. Magn. Magn. Mater. 305(2), 529–533 (2006)CrossRefGoogle Scholar
  36. 36.
    Jayalekshmi, A.C., Victor, S.P., Sharma, C.P.: Colloids Surf. B 101, 196–204 (2013)CrossRefGoogle Scholar
  37. 37.
    Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F.: Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos. Sci. Technol. 70, 1764–1776 (2010)CrossRefGoogle Scholar
  38. 38.
    Roberto, S., Magalhães, M.: Analysis of bioactive glasses obtained by sol–gel processing for radioactive implants. Mater. Res. 6, 123–127 (2003)CrossRefGoogle Scholar
  39. 39.
    Roberto, W.S., Pereira, M.M., Campos, T.P.R.: Dosimetric analysis and characterization of radioactive seeds produced by the sol–gel method. Key Eng. Mater. 242, 579–582 (2003)CrossRefGoogle Scholar
  40. 40.
    Roberto, W.S., Pereira, M.M., Campos, T.P.R.: Structure and dosimetric analysis of biodegradable glasses for prostate cancer treatment. Artif. Organs 27, 432–436 (2003)CrossRefGoogle Scholar
  41. 41.
    Campos, T.P.R., Andrade, J.P.L., Costa, I.T., Silva, C.H.T.: Study of the Sm-153 seeds degradation and evaluation of the absorbed dose in rabbit’s liver implants. Prog. Nucl. Energy 50, 757–766 (2008)CrossRefGoogle Scholar
  42. 42.
    Nogueira, L.B., Campos, T.R.P. Nuclear characterization of radioactive bioglass seed for brachytherapy studies. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, pp. 1–9 (2011)Google Scholar
  43. 43.
    El-Kady, A.M., Ali, A.F., Rizk, R.A., Ahmed, M.M.: Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram. Int. 38, 177–188 (2012)CrossRefGoogle Scholar
  44. 44.
    Sadeghi, M., Taghdiri, F., Hosseini, S.H., et al.: Monte Carlo calculated TG-60 dosimetry parameters for the β-emitter S 153 m brachytherapy source Monte Carlo calculated TG-60 dosimetry parameters for the Sm emitter brachytherapy source (2010)Google Scholar
  45. 45.
    Hosseini, S.H., Enferadi, M., Sadeghi, M.: Dosimetric aspects of Ho brachytherapy biodegradable glass seed. Appl. Radiat. Isot. 73, 109–115 (2013)CrossRefGoogle Scholar
  46. 46.
    Khorshidi, A., Ahmadinejad, M., Hosseini, S.H., N-particle, C.: Evaluation of a proposed biodegradable 188 Re source for brachytherapy application a review of dosimetric parameters. Medicine 94, 1–7 (2015)Google Scholar
  47. 47.
    Amols, H., Coffey, C., Duggan, D., et al.: Intravascular brachytherapy physics : Report of the AAPM Radiation Therapy Committee Task Group No. 60. Med. Phys. 26, 119–152 (1999). doi: 10.1118/1.598496 CrossRefGoogle Scholar
  48. 48.
    Christie, J.K., Malik, J., Tilocca, A.: Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium. Phys. Chem. Chem. Phys. 13, 17749–17755 (2011)CrossRefGoogle Scholar
  49. 49.
    Chem, J.M., Christie, J.K., Tilocca, A.: Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. 12023–12031 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Renata Deliberato Aspasio
    • 1
  • Roger Borges
    • 1
  • Juliana Marchi
    • 1
    Email author
  1. 1.Center for Natural Science and Humanities (CCNH)Federal University of ABC (UFABC)Santo AndréBrazil

Personalised recommendations