Skip to main content

Biocompatible Glasses for Cancer Treatment

  • Chapter
  • First Online:
Biocompatible Glasses

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 53))

Abstract

Treatment of cancer is an old issue in the history of medicine. Millions cases are reported every year, as well as millions of cancer-related deaths are also registered. The development of new technologies is changing this scenario, and new cancer treatment techniques have been included in the clinical routine. Among these techniques, hyperthermia and brachytherapy have an interesting prominence. Hyperthermia has been suggested as an auxiliary therapy for cancer treatment, while brachytherapy offers the opportunity of delivering high dose beta radiation emission into the cancerous tissue. In this chapter, we pointed out the use of biocompatible glasses (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glasses) for cancer treatment by either hyperthermia or brachytherapy. A quick review about hyperthermia is provided, and the main compositions of biocompatible glasses used in hyperthermia are discussed regarding their magnetic and biological properties. In addition, few glasses with suitable radiological properties with potential application in prostate cancer and liver cancer are reviewed, as well as new possible glasses composition are considered from the point of view of Monte Carlo and molecular dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The AAPM TG-60 should be taken into account in works involving brachytherapy, and more details about this approach can be found in: Amols et al. [47].

References

  1. Nielsen, O.S., Horsman, M., Overgaard, J.: A future for hyperthermia in cancer treatment. Eur. J. Cancer 37, 1587–1589 (2001)

    Article  Google Scholar 

  2. Wust, P., Hildebrandt, B., Sreenivasa, G., Rau, B., Gellermann, J., Riess, H., Felix, R., Schlag, E.P.M.: Hyperthermia in combined treatment of cancer. Lancet Oncol. 3, 487–497 (2002)

    Article  Google Scholar 

  3. Jiang, Y., Ou, J., Zhang, Z., Qin, Q.H.: Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects. J. Mater. Sci. Mater. Med. 22, 721–729 (2011)

    Article  Google Scholar 

  4. Cui, Z., et al.: Molecular mechanisms of hyperthermia-induced apoptosis enhanced by docosahexaenoic acid: Implication for cancer therapy, pp. 1–8. Chemico-Biological Interactions, Japan (2014)

    Google Scholar 

  5. Arcos, D., Real, P., Vallet-Regí, M.: Biphasic materials for bone grafting and hyperthermia treatment of cancer. J. Biomed. Mater. Res. A 65(1), 71–78 (2003)

    Article  Google Scholar 

  6. Shah, S.A., Hashmi, M.U., Alam, S., Shamim, A.: Magnetic and bioactivity evaluation of ferrimagnetic ZnFe2O4 containing glass ceramics for the hyperthermia treatment of cancer. J. Magn. Magn. Mater. 322, 375–381 (2010)

    Article  Google Scholar 

  7. Li, J.: Physics of Tumor Hyperthermia, pp. 1–6. Science Publisher, Beijing (2008)

    Google Scholar 

  8. Baronzio, G.F., Hager, E.D.: Hyperthermia in Cancer Treatment: A Primer, pp. 3–4. Medical Intelligent Unit, Springer & Landes Bioscience, New York (2006)

    Book  Google Scholar 

  9. Oleson, J.R., Dewhirst, M.W.: Hyperthermia: an overview of current progress and problems. Curr. Probl. Cancer 8(6), 1–62 (1983)

    Article  Google Scholar 

  10. Giri, J., Ray, A., Dasgupta, S., Datta, D., Bahadur, D.: Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications. Bio-Med. Mater. Eng. 13(4), 387–399 (2003)

    Google Scholar 

  11. Gilchrist, R.K., Medal, R., Shorey, W.D., Hanselman, R.C., Parott, J.C., Taylor, C.B.: Selective inductive heating of lymph nodes. Ann. Surg. 146, 596–606 (1997)

    Article  Google Scholar 

  12. Yanase, M., Shinkai, M., Honda, H., Wakabayashi, T., Yoshida, J., Kobayashi, T.: Intracellular hyperthermia for cancer using magnetite cationic liposomes: ex vivo study. Jpn. J. Cancer Res. 88(7), 630–632 (1997)

    Article  Google Scholar 

  13. Mosbach, K., Anderson, L.: Magnetic ferrofluids for preparation of magnetic polymers and their application in affinity chromatography. Nature 270, 259 (1997)

    Article  Google Scholar 

  14. Jianhua, C., Naru, Y.: Present situation of cancer hyperthermia. Mater. J. Chin. Ceram. Soc. 29, 238–244 (2001)

    Google Scholar 

  15. Shliomis, M.I.: Magnetic fluids. Sov. Phys. Usp. 17, 153–184 (1963)

    Article  Google Scholar 

  16. Hergt, R., Andrä, W., D’ambly, C.G., Hilger, I., Kaiser, W.A., Richter, U., Schmidt, H.G.: Physical limits of hyperthermia using magnetite fine particles. IEEE Trans. Magn. 34, 3745–3754 (1998)

    Article  Google Scholar 

  17. Alcaide, M., Ramirez, S.C., Feito, M.J., De La Concepci, N., Matesanz, M., Ruiz, E.H., Arcos, D., Vallet, R.M., Portolos, M.T. In vitro evaluation of glass–glass ceramic thermoseed-induced hyperthermia on human osteosarcoma cell line. J. Biomed. Mater. Res. A 100A, 64–71 (2012)

    Google Scholar 

  18. Hildebrandt, B., Wust, P., Ahlers, O., Dieing, A., Sreenivasa, G., Kerner, T., Felix, R., Riess, H.: The cellular and molecular basis of hyperthermia. Crit. Rev. Oncol. Hematol. 43, 33–56 (2002)

    Article  Google Scholar 

  19. Clavel, C.M., Nowak-Sliwinska, P., Paunescu, E., Dyson, P.J.: Thermoresponsive fluorinated small-molecule drugs: a new concept for efficient localized chemotherapy. Med. Chem. Commun. 6, 2054–2062 (2015)

    Article  Google Scholar 

  20. Overgaard, J.: Effect of hyperthermia on malignant cells in vivo: a review and a hypothesis. Cancer 39, 2637–2646 (1977)

    Article  Google Scholar 

  21. Jordan, A., Scholz, R., Wust, P., Fähling, H., Felix, R.: Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J. Magn. Magn. Mater. 201, 413–419 (1999)

    Article  Google Scholar 

  22. American Cancer Society. www.cancer.org. Accessed 31 March 2016

  23. Williamson, J.F.: Brachytherapy technology and physics practice since 1950: a half-century of progress. Phys. Med. Biol. 51(13), R303–R325 (2006)

    Article  Google Scholar 

  24. Li, G., Feng, S., Shou, D.: Magnetic bioactive glass ceramic in the system CaO–P2O5–SiO2–MgO–CaF2–MnO2–Fe2O3 for hyperthermia treatment of bone tumor. J. Mater. Sci. Mater. Med. 22, 2197–2206 (2011)

    Article  Google Scholar 

  25. Pereira, M.M., Clark, A.E., Hench, L.L.: Calcium phosphate formation on sol–gel derived bioactive glasses in vitro. J. Biomed. Mater. Res. 28, 693–698 (1994)

    Article  Google Scholar 

  26. Vallet-Regí, M., Arcos, D., Pariente, J.: Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol–gel glasses. J. Biomed. Mater. Res. 51, 23–28 (2000)

    Article  Google Scholar 

  27. Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74, 1487–1510 (1991)

    Article  Google Scholar 

  28. Balas, F., Arcos, D., Perez-Pariente, J., Vallet-Regí, M.: Textural properties of SiO2·CaO·P2O5 glasses prepared by the sol–gel method. J. Mater. Res. 6, 1345–1348 (2001)

    Article  Google Scholar 

  29. Baeza, A., Arcos, D., Vallet-Regí, M.: Thermoseeds for interstitial magnetic hyperthermia: from bioceramics to nanoparticles. J. Phys.: Condens. Matter 25, 11 (2013)

    Google Scholar 

  30. Wang, H., Zhao, S., Zhou, J., Zhu, K., Cui, X., Huang, W., Rahman, M.N., Zhang, C., Wang, D. Biocompatibility and osteogenic capacity of borosilicate bioactive glass scaffolds loaded with Fe3O4 magnetic nanoparticles. J. Mater. Chem. 3, 4377–4387 (2015)

    Google Scholar 

  31. Kokubo, T.: Bioactive glass ceramics: properties and applications. Biomaterials 12(2), 155–163 (1991)

    Article  Google Scholar 

  32. Da Li, G., Zhou, D.L., Lin, Y., Pan, T.H., Chen, G.S., Yin, Q.D.: Synthesis and characterization of magnetic bioactive glass-ceramics containing Mg ferrite for hyperthermia. Mater. Sci. Eng. C 30, 148–153 (2010)

    Article  Google Scholar 

  33. Eniu, D., Cacaina, D., Coldea, M., Valeanu, M., Simon, S.: Structural and magnetic properties of CaO–P2O5–SiO2–Fe2O3 glass–ceramics for hyperthermia. J. Magn. Magn. Mater. 293, 310–313 (2005)

    Article  Google Scholar 

  34. Singh, R.K., Kothiyal, G.P., Srinivasan, A.: Magnetic and structural properties of CaO–SiO2–P2O5–Na2O–Fe2O3 glass ceramics. J. Magn. Magn. Mater. 320, 1352–1356 (2008)

    Article  Google Scholar 

  35. Bretcanu, O., Verné, E., Cöisso, M., Tiberto, P., Allia, P.: Magnetic properties of the ferrimagnetic glass-ceramics for hyperthermia. J. Magn. Magn. Mater. 305(2), 529–533 (2006)

    Article  Google Scholar 

  36. Jayalekshmi, A.C., Victor, S.P., Sharma, C.P.: Colloids Surf. B 101, 196–204 (2013)

    Article  Google Scholar 

  37. Boccaccini, A.R., Erol, M., Stark, W.J., Mohn, D., Hong, Z., Mano, J.F.: Polymer/bioactive glass nanocomposites for biomedical applications: a review. Compos. Sci. Technol. 70, 1764–1776 (2010)

    Article  Google Scholar 

  38. Roberto, S., Magalhães, M.: Analysis of bioactive glasses obtained by sol–gel processing for radioactive implants. Mater. Res. 6, 123–127 (2003)

    Article  Google Scholar 

  39. Roberto, W.S., Pereira, M.M., Campos, T.P.R.: Dosimetric analysis and characterization of radioactive seeds produced by the sol–gel method. Key Eng. Mater. 242, 579–582 (2003)

    Article  Google Scholar 

  40. Roberto, W.S., Pereira, M.M., Campos, T.P.R.: Structure and dosimetric analysis of biodegradable glasses for prostate cancer treatment. Artif. Organs 27, 432–436 (2003)

    Article  Google Scholar 

  41. Campos, T.P.R., Andrade, J.P.L., Costa, I.T., Silva, C.H.T.: Study of the Sm-153 seeds degradation and evaluation of the absorbed dose in rabbit’s liver implants. Prog. Nucl. Energy 50, 757–766 (2008)

    Article  Google Scholar 

  42. Nogueira, L.B., Campos, T.R.P. Nuclear characterization of radioactive bioglass seed for brachytherapy studies. International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, pp. 1–9 (2011)

    Google Scholar 

  43. El-Kady, A.M., Ali, A.F., Rizk, R.A., Ahmed, M.M.: Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram. Int. 38, 177–188 (2012)

    Article  Google Scholar 

  44. Sadeghi, M., Taghdiri, F., Hosseini, S.H., et al.: Monte Carlo calculated TG-60 dosimetry parameters for the β-emitter S 153 m brachytherapy source Monte Carlo calculated TG-60 dosimetry parameters for the Sm emitter brachytherapy source (2010)

    Google Scholar 

  45. Hosseini, S.H., Enferadi, M., Sadeghi, M.: Dosimetric aspects of Ho brachytherapy biodegradable glass seed. Appl. Radiat. Isot. 73, 109–115 (2013)

    Article  Google Scholar 

  46. Khorshidi, A., Ahmadinejad, M., Hosseini, S.H., N-particle, C.: Evaluation of a proposed biodegradable 188 Re source for brachytherapy application a review of dosimetric parameters. Medicine 94, 1–7 (2015)

    Google Scholar 

  47. Amols, H., Coffey, C., Duggan, D., et al.: Intravascular brachytherapy physics : Report of the AAPM Radiation Therapy Committee Task Group No. 60. Med. Phys. 26, 119–152 (1999). doi:10.1118/1.598496

    Article  Google Scholar 

  48. Christie, J.K., Malik, J., Tilocca, A.: Bioactive glasses as potential radioisotope vectors for in situ cancer therapy: investigating the structural effects of yttrium. Phys. Chem. Chem. Phys. 13, 17749–17755 (2011)

    Article  Google Scholar 

  49. Chem, J.M., Christie, J.K., Tilocca, A.: Integrating biological activity into radioisotope vectors: molecular dynamics models of yttrium-doped bioactive glasses. 12023–12031 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Marchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aspasio, R.D., Borges, R., Marchi, J. (2016). Biocompatible Glasses for Cancer Treatment. In: Marchi, J. (eds) Biocompatible Glasses. Advanced Structured Materials, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-44249-5_10

Download citation

Publish with us

Policies and ethics