Advertisement

Bioactive Materials: Definitions and Application in Tissue Engineering and Regeneration Therapy

  • Jon Whitlow
  • Arghya Paul
  • Alessandro PoliniEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 53)

Abstract

The field of biomaterials has been evolving at an astonished rate in the last decades, leading to the design of bioactive materials, materials able to elicit specific and predictable cells and tissues responses. This chapter will go through the key milestones achieved during this exciting development with special emphasis on the meaning of material-driven bioactivity and its importance in the optimization of highly performing tissue regeneration and regeneration therapy methodologies. An overview on the history of bioactive glasses (bioglasses) (please consult the Editor’s note in order to clarify the usage of the terms bioglass, bioactive glass and biocompatible glass) and their biological properties will describe the huge potential of these materials in regenerative medicine applications. Finally, an introduction on stem cells and their role in the physiological development of tissues and organs will be given, shedding light on therapeutic synergistic approaches based on the use of bioactive materials and stem cells.

Keywords

Stem Cell Calcium Phosphate Osteogenic Differentiation Bioactive Glass Stem Cell Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Arghya Paul would like to acknowledge the Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of National Institutes of Health (NIH), under Award Number P20GM103638-04 and University of Kansas New Faculty General Research Fund. Alessandro Polini would like to acknowledge the Radboud Excellence Initiative from Radboud University for funding.

References

  1. 1.
    Williams, D.F.: On the nature of biomaterials. Biomaterials 30(30), 5897–5909 (2009)CrossRefGoogle Scholar
  2. 2.
    Holzapfel, B.M., et al.: How smart do biomaterials need to be? A translational science and clinical point of view. Adv. Drug Deliv. Rev. 65(4), 581–603 (2013)CrossRefGoogle Scholar
  3. 3.
    Ratner, B.D., Bryant, S.J.: Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004)CrossRefGoogle Scholar
  4. 4.
    Hench, L.: Biomaterials. Science 208(4446), 826–831 (1980)CrossRefGoogle Scholar
  5. 5.
    Hench, L.L., Thompson, I.: Twenty-first century challenges for biomaterials. J. R. Soc. Interface 7(Suppl 4), S379–S391 (2010)CrossRefGoogle Scholar
  6. 6.
    Shin, H., Jo, S., Mikos, A.G.: Biomimetic materials for tissue engineering. Biomaterials 24(24), 4353–4364 (2003)CrossRefGoogle Scholar
  7. 7.
    Polini, A., et al.: Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors. PLoS ONE 6(10), e26211 (2011)CrossRefGoogle Scholar
  8. 8.
    Polini, A., Bai, H., Tomsia, A.P.: Dental applications of nanostructured bioactive glass and its composites. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5(4), 399–410 (2013)CrossRefGoogle Scholar
  9. 9.
    Hench, L.L., et al.: Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed. Mater. Res. 5(6), 117–141 (1971)CrossRefGoogle Scholar
  10. 10.
    Cao, W., Hench, L.L.: Bioactive materials. Ceram. Int. 22(6), 493–507 (1996)CrossRefGoogle Scholar
  11. 11.
    Hench, L.L.: Bioceramics: from concept to clinic. J. Am. Ceram. Soc. 74(7), 1487–1510 (1991)CrossRefGoogle Scholar
  12. 12.
    Baron, R.: Cell-mediated extracellular acidification and bone resorption: evidence for a low pH in resorbing lacunae and localization of a 100-kD lysosomal membrane protein at the osteoclast ruffled border. J. Cell Biol. 101(6), 2210–2222 (1985)CrossRefGoogle Scholar
  13. 13.
    Bagambisa, F.B., Joos, U., Schilli, W.: Mechanisms and structure of the bond between bone and hydroxyapatite ceramics. J. Biomed. Mater. Res. 27(8), 1047–1055 (1993)CrossRefGoogle Scholar
  14. 14.
    de Bruijn, J.D., van Blitterswijk, C.A., Davies, J.E.: Initial bone matrix formation at the hydroxyapatite interface in vivo. J. Biomed. Mater. Res. 29(1), 89–99 (1995)CrossRefGoogle Scholar
  15. 15.
    Hench, L.L., Paschall, H.A.: Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J. Biomed. Mater. Res. 7(3), 25–42 (1973)CrossRefGoogle Scholar
  16. 16.
    Hench, L.L., Polak, J.M.: Third-generation biomedical materials. Science 295(5557), 1014–1017 (2002)CrossRefGoogle Scholar
  17. 17.
    Jones, J.R.: Review of bioactive glass: from Hench to hybrids. Acta Biomater. 9(1), 4457–4486 (2013)CrossRefGoogle Scholar
  18. 18.
    Vallet-Regí, M., Ragel, C.V., Antonio, J.: Salinas, glasses with medical applications. Eur. J. Inorg. Chem. 2003(6), 1029–1042 (2003)CrossRefGoogle Scholar
  19. 19.
    Bosetti, M., Cannas, M.: The effect of bioactive glasses on bone marrow stromal cells differentiation. Biomaterials 26(18), 3873–3879 (2005)CrossRefGoogle Scholar
  20. 20.
    Xynos, I.D., et al.: Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J. Biomed. Mater. Res. 55(2), 151–157 (2001)CrossRefGoogle Scholar
  21. 21.
    Gorustovich, A.A., Roether, J.A., Boccaccini, A.R.: Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng. Part B Rev. 16(2), 199–207 (2010)CrossRefGoogle Scholar
  22. 22.
    Zhang, D., et al.: Antibacterial effects and dissolution behavior of six bioactive glasses. J. Biomed. Mater. Res. A 93(2), 475–483 (2010)Google Scholar
  23. 23.
    Day, R.M., Boccaccini, A.R.: Effect of particulate bioactive glasses on human macrophages and monocytes in vitro. J. Biomed. Mater. Res. A 73(1), 73–79 (2005)CrossRefGoogle Scholar
  24. 24.
    Beattie, J.H., Avenell, A.: Trace element nutrition and bone metabolism. Nutr. Res. Rev. 5(1), 167–188 (1992)CrossRefGoogle Scholar
  25. 25.
    Hoppe, A., Guldal, N.S., Boccaccini, A.R.: A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11), 2757–2774 (2011)CrossRefGoogle Scholar
  26. 26.
    Wang, M.: Developing bioactive composite materials for tissue replacement. Biomaterials 24(13), 2133–2151 (2003)CrossRefGoogle Scholar
  27. 27.
    Bonfield, W., et al.: Hydroxyapatite reinforced polyethylene—a mechanically compatible implant material for bone replacement. Biomaterials 2(3), 185–186 (1981)CrossRefGoogle Scholar
  28. 28.
    Sola, A., et al.: Bioactive glass coatings: a review. Surf. Eng. 27(8), 560–572 (2011)CrossRefGoogle Scholar
  29. 29.
    Ramalho-Santos, M., Willenbring, H.: On the origin of the term “stem cell”. Cell Stem Cell 1(1), 35–38 (2007)CrossRefGoogle Scholar
  30. 30.
    Thomson, J.A., et al.: Embryonic stem cell lines derived from human blastocysts. Science 282(5391), 1145–1147 (1998)CrossRefGoogle Scholar
  31. 31.
    Takahashi, K., Yamanaka, S.: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4), 663–676 (2006)CrossRefGoogle Scholar
  32. 32.
    Gatti, R., et al.: Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 292(7583), 1366–1369 (1968)CrossRefGoogle Scholar
  33. 33.
    Gratwohl, A., et al.: Hematopoietic stem cell transplantation: a global perspective. JAMA 303(16), 1617–1624 (2010)CrossRefGoogle Scholar
  34. 34.
    Engler, A.J., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)CrossRefGoogle Scholar
  35. 35.
    Wang, H., et al.: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28(22), 3338–3348 (2007)CrossRefGoogle Scholar
  36. 36.
    Polini, A., et al.: Stable biofunctionalization of hydroxyapatite (HA) surfaces by HA-binding/osteogenic modular peptides for inducing osteogenic differentiation of mesenchymal stem cells. Biomater. Sci. 2, 1779–1786 (2014)CrossRefGoogle Scholar
  37. 37.
    Zhao, F., et al.: Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27(9), 1859–1867 (2006)CrossRefGoogle Scholar
  38. 38.
    Liu, H., et al.: Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49, 103–112 (2015)CrossRefGoogle Scholar
  39. 39.
    Zandi, M., et al.: Biocompatibility evaluation of nano-rod hydroxyapatite/gelatin coated with nano-HAp as a novel scaffold using mesenchymal stem cells. J. Biomed. Mater. Res. A 92(4), 1244–1255 (2010)Google Scholar
  40. 40.
    Zhou, D.S., et al.: Repair of segmental defects with nano-hydroxyapatite/collagen/PLA composite combined with mesenchymal stem cells. J. Bioact. Compat. Polym. 21(5), 373–384 (2006)CrossRefGoogle Scholar
  41. 41.
    Huang, Y., et al.: Micro-/nano- sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale 4(7), 2484–2490 (2012)CrossRefGoogle Scholar
  42. 42.
    Curtin, C.M., et al.: Combinatorial gene therapy accelerates bone regeneration: non-viral dual delivery of VEGF and BMP2 in a collagen-nanohydroxyapatite scaffold. Adv. Healthcare Mater. 4(2), 223–227 (2015)CrossRefGoogle Scholar
  43. 43.
    Gan, Y., et al.: The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29(29), 3973–3982 (2008)CrossRefGoogle Scholar
  44. 44.
    Arinzeh, T.L., et al.: A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26(17), 3631–3638 (2005)CrossRefGoogle Scholar
  45. 45.
    Sun, H., et al.: The upregulation of osteoblast marker genes in mesenchymal stem cells prove the osteoinductivity of hydroxyapatite/tricalcium phosphate biomaterial. Transpl. Proc. 40(8), 2645–2648 (2008)CrossRefGoogle Scholar
  46. 46.
    Tang, M., et al.: Human embryonic stem cell encapsulation in alginate microbeads in macroporous calcium phosphate cement for bone tissue engineering. Acta Biomater. 8(9), 3436–3445 (2012)CrossRefGoogle Scholar
  47. 47.
    Han, P., Wu, C., Xiao, Y.: The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells. Biomater. Sci. 1(4), 379–392 (2013)CrossRefGoogle Scholar
  48. 48.
    Mihaila, S.M., et al.: The osteogenic differentiation of SSEA-4 sub-population of human adipose derived stem cells using silicate nanoplatelets. Biomaterials 35(33), 9087–9099 (2014)CrossRefGoogle Scholar
  49. 49.
    Mieszawska, A.J., et al.: Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials 31(34), 8902–8910 (2010)CrossRefGoogle Scholar
  50. 50.
    Ren, M., et al.: Ascorbic acid delivered by mesoporous silica nanoparticles induces the differentiation of human embryonic stem cells into cardiomyocytes. Mater. Sci. Eng. C 56, 348–355 (2015)CrossRefGoogle Scholar
  51. 51.
    Ambre, A.H., Katti, D.R., Katti, K.S.: Nanoclays mediate stem cell differentiation and mineralized ECM formation on biopolymer scaffolds. J. Biomed. Mater. Res. A 101(9), 2644–2660 (2013)CrossRefGoogle Scholar
  52. 52.
    Gaharwar, A.K., et al.: Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells. Tissue Eng. Part A 20(15–16), 2088–2101 (2014)CrossRefGoogle Scholar
  53. 53.
    Ohgushi, H., et al.: Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. J. Biomed. Mater. Res. 32(3), 341–348 (1996)CrossRefGoogle Scholar
  54. 54.
    Day, R.M.: Bioactive glass stimulates the secretion of angiogenic growth factors and angiogenesis in vitro. Tissue Eng. 11(5–6), 768–777 (2005)CrossRefGoogle Scholar
  55. 55.
    Tsigkou, O., et al.: Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass conditioned medium in the absence of osteogenic supplements. Biomaterials 30(21), 3542–3550 (2009)CrossRefGoogle Scholar
  56. 56.
    Haro Durand, L.A., et al.: Angiogenic effects of ionic dissolution products released from a boron-doped 45S5 bioactive glass. J. Mater. Chem. B 3(6), 1142–1148 (2015)CrossRefGoogle Scholar
  57. 57.
    Rath, S.N., et al.: Bioactive copper-doped glass scaffolds can stimulate endothelial cells in co-culture in combination with mesenchymal stem cells. PLoS ONE 9(12), e113319 (2014)CrossRefGoogle Scholar
  58. 58.
    Wu, X., et al.: Zn and Sr incorporated 64S bioglasses: material characterization, in-vitro bioactivity and mesenchymal stem cell responses. Mater. Sci. Eng. C 52, 242–250 (2015)CrossRefGoogle Scholar
  59. 59.
    Ojansivu, M., et al.: Bioactive glass ions as strong enhancers of osteogenic differentiation in human adipose stem cells. Acta Biomater. 21, 190–203 (2015)CrossRefGoogle Scholar
  60. 60.
    Miola, M., et al.: In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater. Sci. Eng. C 38, 107–118 (2014)CrossRefGoogle Scholar
  61. 61.
    Wu, C., et al.: Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2), 422–433 (2013)CrossRefGoogle Scholar
  62. 62.
    Larrañaga, A., et al.: Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds. J. Biomed. Mater. Res. A 103, 3815–3824 (2015)CrossRefGoogle Scholar
  63. 63.
    Handel, M., et al.: 45S5-Bioglass((R))-based 3D-scaffolds seeded with human adipose tissue-derived stem cells induce in vivo vascularization in the CAM angiogenesis assay. Tissue Eng. Part A 19(23–24), 2703–2712 (2013)CrossRefGoogle Scholar
  64. 64.
    Nayak, T.R., et al.: Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4(12), 7717–7725 (2010)CrossRefGoogle Scholar
  65. 65.
    Chao, T.-I., et al.: Carbon nanotubes promote neuron differentiation from human embryonic stem cells. Biochem. Biophys. Res. Commun. 384(4), 426–430 (2009)CrossRefGoogle Scholar
  66. 66.
    Suliman, S., et al.: Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo. J. Controlled Release 197, 148–157 (2015)CrossRefGoogle Scholar
  67. 67.
    Wu, T.-J., et al.: Tracking the engraftment and regenerative capabilities of transplanted lung stem cells using fluorescent nanodiamonds. Nat. Nano 8(9), 682–689 (2013)CrossRefGoogle Scholar
  68. 68.
    Nayak, T.R., et al.: Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5(6), 4670–4678 (2011)CrossRefGoogle Scholar
  69. 69.
    Akhavan, O., Ghaderi, E.: Differentiation of human neural stem cells into neural networks on graphene nanogrids. J. Mater. Chem. B 1(45), 6291–6301 (2013)CrossRefGoogle Scholar
  70. 70.
    Chen, G.Y., et al.: A graphene-based platform for induced pluripotent stem cells culture and differentiation. Biomaterials 33(2), 418–427 (2012)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.BioIntel Research Laboratory, Department of Chemical and Petroleum Engineering, Bioengineering Graduate Program, School of EngineeringUniversity of KansasLawrenceUSA
  2. 2.Radboud Excellence InitiativeRadboud UniversityNijmegenThe Netherlands
  3. 3.Department of BiomaterialsRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations