Skip to main content

Energy and Bandwidth-Efficient Modulation

  • Chapter
  • First Online:
Book cover Energy and Bandwidth-Efficient Wireless Transmission

Part of the book series: Signals and Communication Technology ((SCT))

  • 1257 Accesses

Abstract

In addition to the requirement of high spectral efficiency, power (or energy) efficiency—equivalent to battery life—is another important requirement for modulation techniques. In some applications, such as mobile handset devices, portable devices, and even satellite communication equipment, energy efficiency is crucial to achieve longer battery life or longer communication time. In these applications, to maintain minimum DC power consumption by power amplifiers, the power amplifier must operate in or close to the saturation region to maximize energy efficiency or minimize DC power consumption because the minimum DC current consumption occurs in a saturation region. However, a saturated amplifier introduces amplitude modulation to amplitude modulation (AM/AM) and amplitude modulation to phase modulation (AM/PM) conversions into the amplified signal, which is usually the amplitude- and phase-modulated signal. If such an input signal to a power amplifier that operates in or close to a saturated condition is a non-constant envelope modulation signal, its output will be affected by the AM/AM and AM/PM conversions. As a result, a nonlinearly amplified signal at the output of the power amplifier is affected by spectrum regrowth such that its output signal cannot meet the required spectrum mask or adjacent channel power ratio (ACPR) imposed by different standards and its error vector magnitude (EVM) is degraded as well. Thus, requirements of both energy efficiency and ACPR or spectrum efficiency impose constant or nearly constant envelope characteristics on the modulated signal to the power amplifier.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Proakis, J. G. (1995). Digital communications (3rd ed.). New York, NY: McGraw-Hill Inc.

    MATH  Google Scholar 

  2. Simon, M. K. (2001). Bandwidth-efficient digital modulation with application to deep-space communications (Deep-space communications and navigation series). New York, NY: John Wiley & Sons Inc.

    Google Scholar 

  3. Murota, K., & Hirade, K. (1981, July). GMSK modulation for digital mobile radio telephony. IEEE Transactions on Communications, 29(7), 1044–1050.

    Google Scholar 

  4. Feher, K. (1995). Wireless and digital communications; modulation & spread spectrum applications. Upper Saddle River, NJ: Prentice-Hall PTR.

    Google Scholar 

  5. Gao, W., Soderstrand, M., & Feher, K (1995, May). Gaussian filter screens TDMA and frequency-hopping spread-spectrum signals. Microwave & RF (pp. 17–20).

    Google Scholar 

  6. Feher, K., & Kato, S. U.S. patents: 4,567,602; 4,339,724; 4,644,565; 5,784,402; 5,491,457. Canadian patents: 1,211,517; 1,130,871; 1,265,851.

    Google Scholar 

  7. Seo, J. S., & Feher, K. (1985, May). SQAM: A new superposed QAM modem technique. Transactions on Communications, COM-33(3), 296–300.

    Google Scholar 

  8. Kato, S., & Feher, K (1983, May). XPSK: A new cross-correlated phase shift keying modulation technique. IEEE Transactions on Communications, COM-31(5), 701–707.

    Google Scholar 

  9. Telemetry Group. (2004, May). Telemetry Standards, IRIG Standard 106-04.

    Google Scholar 

  10. Simon, M. K., & Wang, C. C. (1984, November). Differential detection of Gaussian MSK in a mobile radio environment. IEEE Transactions on Vehicular Technology, VT-33(4), 307–320.

    Google Scholar 

  11. Sato, Y. (1975, June). A method of self-recovering equalization for multilevel amplitude modulation systems. IEEE Transactions on Communications, COM-23, 679–682.

    Google Scholar 

  12. Godard, D. N. (1980, November). Self-recovering equalization and carrier tracking in two dimensional data communication systems. IEEE Transactions on Communications, COM-28, 1867–1875.

    Google Scholar 

  13. Treichler, J. R., et al. (1983, April). A new approach to multipath correction of constant modulus signals. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-31(2), 459–472.

    Google Scholar 

  14. Pasupathy, S. (1979, July). Minimum shift keying: A spectrally efficient modulation. IEEE Communications Magazine (pp. 14–22).

    Google Scholar 

  15. Gao, W., & Feher, K. (1996, March). All digital reverse modulation architecture based carrier recovery implementation for GMSK and compatible FQPSK. IEEE Transaction on Broadcasting, 42(1), 55–62.

    Google Scholar 

  16. Spilker, J. J., Jr. (1977). Digital communication by satellite (pp. 31–312). Englewood Cliffs, NJ: Prentice-Hall, Inc.

    Google Scholar 

  17. Cavers, J. (1991, May). Performance of tone calibration with frequency offset and imperfect pilot filter. IEEE Transactions on Vehicular Technology, VT-40, 426–434.

    Google Scholar 

  18. Jain, P. K. (2004, December). Regenerate coherent carriers from PSK signals. Microwaves & RF (pp. 52–68).

    Google Scholar 

  19. Weber, C. L., & Alem, W. K. (1980, December). Demod-remod coherent tracking receiver for QPSK and SQPSK. IEEE Transactions on Communications, COM-28(12), 1945–1954.

    Google Scholar 

  20. Morihiro, Y., Nakajima, S., & Furuya, N. (1979, October). A 100 Mbit/s prototype MSK modem for satellite communications. IEEE Transactions on Communications, COM-27(10), 1512–1518.

    Google Scholar 

  21. Kaleh, G. K. (1989, December). Simple coherent receivers for partial response continuous phase modulation. IEEE Journal on Selected Areas in Communications, 7(9), 1427–1436.

    Google Scholar 

  22. Anderson, J. B., Aulin, T., & Sundberg, C. E. (1986). Digital phase modulation. New York, NY: Plenum.

    Book  Google Scholar 

  23. Liu, G. L. (1998, October). Threshold detection performance of GMSK signal with BTb = 0.5. MILCOM’98 Conference Proceedings, 2, 515–519.

    Google Scholar 

  24. Laurent, P. A. (1986, February). Exact and approximate construction of digital phase modulations by superposition of amplitude modulated pulse. IEEE Transactions on Communications, COM-34(2), 150–160.

    Google Scholar 

  25. Costas, J. P. (1956). Synchronous communications. Proceedings of the IRE, 44, 1713–1718.

    Article  Google Scholar 

  26. Holmes, J. K. (1982). Coherent spread spectrum systems. New York, NY: John Wiley & Sons Inc.

    Google Scholar 

  27. Chung, B. Y., et al. (1993, September). Performance analysis of an all-digital BPSK direct-sequence spread-spectrum IF receiver architecture. IEEE Journal on Selected Areas in Communications, 11(7), 1096–1107.

    Google Scholar 

  28. Gardner, F. M. (1979). Phase lock techniques. New York, NY: Jon Wiley & Sons Inc.

    Google Scholar 

  29. Lee, E. A., & Messerschmitt, D. G. (1994). Digital communication. Norwell, MA: Kluwer Academic Publishers.

    Book  Google Scholar 

  30. GSM 05.05 version 8.5.1 Release 1999. Digital Cellular Telecommunications Systems (Phase 2+); Radio Transmission and Reception. ETSI EN 300 910 V8.5.1 (2000-11).

    Google Scholar 

  31. Weldon, J. A., Narayanaswami, R. S., Rudell, J. C., Lin, L., Otsuka, M., & Dedieu, S. (2001, December). A 1.75 GHz highly integrated narrow-band CMOS transmitter with harmonic-rejection mixers. IEEE Journal of Solid-State Circuits, 36(12), 2003–2015.

    Google Scholar 

  32. Stetzler, T. D., Post, I. G., Havens, J. H., & Koyama, M. (1995, December). A 2.7-4.5V single chip GSM transceiver RF integrated circuit. IEEE Journal of Solid-State Circuits, 30, 1421–1429.

    Google Scholar 

  33. Tham, J. I., et al. (March 1999). A 2.7V 900 MHz/1.9 GHz dual band transceiver IC for digital wireless communication. IEEE Journal of Solid-State Circuit, 34(3), 286–291.

    Google Scholar 

  34. LMX3162 data sheet, National Semiconductor Corporation, January 2000.

    Google Scholar 

  35. Heinen, S., Beyer, S., & Fenk, J. (1995, February). A 3.0V 2 GHz transmitter IC for digital radio communication with integrated VCO’s. Proceedings of the IEEE International Solid-State Circuits Conference (pp. 150–151).

    Google Scholar 

  36. Razavi, B. (2003). RF microelectronics. Taiwan: Pearson Education.

    Google Scholar 

  37. Goldberg, B. (1999, June). Analog and digital fractional-N PLL frequency synthesis: A survey and update. Applied Microwave & Wireless (pp. 32–42).

    Google Scholar 

  38. Riley, T. A. D., & Copeland, M. A. (1994, May). A simplified continuous phase modulator. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 41(5), 321–328.

    Google Scholar 

  39. Vandegraff, J. J. (1989, September 12). Phase locked frequency synthesizer with single input wideband modulation systems. US Patent 4,866,404.

    Google Scholar 

  40. Perrott, M. H., Tewksbury, T. L., & Sodini, C. G. (1997, December). A 27-mW CMOS fractional-N synthesizer using digital compensation for 2.5 Mbit/s GFSK modulation. IEEE Journal of Solid-State Circuits, 32(12), 2048–2060.

    Google Scholar 

  41. Bax, W. T., & Copeland, M. A. (2001, August). A GMSK modulator using a Δ∑ frequency discriminator based synthesizer. IEEE Journal of Solid-State Circuits, 36(8), 1218–1227.

    Google Scholar 

  42. Lee, S. T. (2003). Quad-band global system for mobile communications complementary metal-oxide-semiconductor transmitter. Doctor’s dissertation, University of Washington.

    Google Scholar 

  43. McMahil, D. R., & Sodini, C. G. (2001). Automatic calibration of modulated ∑−Δ frequency synthesizers. Symposium on VLSI Circuits Digest of Technical Papers (pp. 51–54).

    Google Scholar 

  44. McMahill, D. R., & Sodini, C. G. (2002, January). A 2.5 Mb/s GFSK 5 Mb/s 4-FSK automatically calibrated ∑−Δ frequency synthesizer. IEEE Journal of Solid-State Circuits, 37(1), 18–26.

    Google Scholar 

  45. Lee, T. H., & Bulzacchelli, J. F. (1992, December). A 155 MHz clock recovery delay- and phase-locked loop. IEEE Journal of Solid-State Circuits, 27(12), 1736–1746.

    Google Scholar 

  46. Yamawaki, T., Kokubo, M., Irie, K., Matsui, H., Hori, K., Endou, T., et al. (1997, December). A 2.7V GSM RF transceiver IC. IEEE Journal of Solid-State Circuit, 32(12), 2089–2096.

    Google Scholar 

  47. Imine, G., Herzinger, S., Schmidtz, R., Kubetzko, D., & Fenk, J. (1998, February). An up-conversion loop transmitter IC for digital mobile telephones. ISSCC Digest of Technical Papers (pp. 364–365).

    Google Scholar 

  48. Tham, J. L., Margarit, M. A., Pregardier, B., Hull, C. D., Magoon, R., & Carr, F. (1999, March). A 2.7V 900 MHz/1.9 GHz dual-band transceiver IC for digital wireless communication. IEEE Journal of Solid-State Circuit, 34(3), 286–291.

    Google Scholar 

  49. Molnar, A., Magoon, R., Zachan, J., Hatcher, G., & Rhee, W. (2002, February). A single-chip quad-band (850/900/1800/1900 MHz) direct conversion GSM/GPRS RF transceiver with integrated VCOs and fractional-N synthesizer. ISSCC Digest of Technical Papers (pp. 184–185).

    Google Scholar 

  50. Song, E., Koo, Y., Jung, Y.-J., Lee, D.-H., Chu, S., & Chae, S.-I. (2005, May). A 0.25 μm CMOS Quad-Band GSM RF transceiver using an efficient LO frequency plan. IEEE Journal of Solid-State Circuits, 40(5), 1094–1106.

    Google Scholar 

  51. Durrant, M., & Nitschke, A. (2005, May). Design considerations for an ultra-compact GSM radio solution. RF Design (pp. 46–54).

    Google Scholar 

  52. Data sheet (2001, December 3). CX74017 RF transceiver for multi-band GSM/GPRS/EDGE applications, Conexant.

    Google Scholar 

  53. Strange, J., & Atkinson, S. (2000, June). A direct conversion transceiver for multi-band GSM application. Proceedings of IEEE RFIC Symposium (pp. 25–28).

    Google Scholar 

  54. Cipriani, S., Carpineto, L., Bisanti, B., Hogervorst, I. R., Puccio, G., & Mouralis, N. (2002). Fully integrated zero IF transceiver for GPRS/GSM/DCS/PCS application. ESSCIRC 2002 (pp. 439–442).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, W. (2017). Energy and Bandwidth-Efficient Modulation. In: Energy and Bandwidth-Efficient Wireless Transmission. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-44222-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44222-8_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44220-4

  • Online ISBN: 978-3-319-44222-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics