Skip to main content

Bandwidth-Efficient Modulation With OFDM

  • Chapter
  • First Online:

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

An orthogonal frequency division multiplexing (OFDM) technique has been developed for wideband data transmission through multipath fading channels without the need for complex equalizers. The concept of OFDM dates back to the 1960s, when Chang [1] first proposed the synthesis of orthogonal signals for multichannel data transmission in 1968. Wideband transmission systems are more vulnerable to multipath fading because the fading notches have a higher chance of dropping into the transmission bandwidth. As its name implies, OFDM is a scheme of splitting a single data sequence at a high bit rate into many parallel sub-data streams at a low symbol rate to conventionally modulate orthogonal subcarriers in order to space these subcarriers close together in a certain bandwidth. OFDM has continuously developed into a very popular scheme for wideband digital communication systems, such as 802.11a/g/n/ac-based wireless local area networks (WLANs), digital television, audio broadcasting, and 4G mobile LTE communication standards.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chang, R. W., & Gibby, R. A. (1968). A theoretical study of performance of an orthogonal multiplexing data transmission scheme. IEEE Transactions on Communications, COM_16(4), 529–540

    Google Scholar 

  2. Saltzberg, B. R. (1967). Performance of an efficient parallel data transmission system. IEEE Transactions on Communication Technology, COM-15(6), 805–811.

    Google Scholar 

  3. Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications (1999). IEEE Std. 802.11a.

    Google Scholar 

  4. Nee, R. V., & Prasad, R. (2000). OFDM for wireless multimedia communications. Boston: Artech House.

    Google Scholar 

  5. Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66, 51–83.

    Article  Google Scholar 

  6. Behzad, A., Carter, K. A., Chien, H.-M., Wu, S., Pan, M.-A., Lee, C. P., et al. (2007). A fully integrated MIMO multiband direct conversion CMOS transceiver for WALN applications (802.11n). IEEE Journal of Solid-State Circuits, 42(12), 2795–2805.

    Article  Google Scholar 

  7. Gao, W., & Shih, D. (2011). Compensation for gain imbalance, phase imbalance and DC offsets in a transmitter. US Patent Application (Document Number: 20080063113), issued date: 10/2011.

    Google Scholar 

  8. Wild, A. D. (1997, September). The peak-to-average power ratio of OFDM. M.Sc. thesis, Delft University of Technology, Delft, Netherlands

    Google Scholar 

  9. May, T., & Rohling, H. (1998). Reducing the peak-to-average power ratio in OFDM radio. In Proceedings of IEEE VTC’98, Ottawa, Canada, May 18-21, 1998 (pp. 2474–2478).

    Google Scholar 

  10. Beek, J. V. D., Sandell, M., & Borjesson, P. O. (1997). ML estimation of timing and frequency offset in OFDM systems. IEEE Transactions on Signal Processing, 45(3), 1800–1805.

    Article  MATH  Google Scholar 

  11. Schmidl, T. M., & Cox, D. C. (1997). Robust frequency and timing synchronization for OFDM. IEEE Transactions on Communications, 45(12), 1613–1621.

    Google Scholar 

  12. Manhas, P., Thakrai, S., & Arora, A. (2014). Synchronization issues in wireless OFDM systems: a review. International Journal of Engineering Research & Technology (IJERT), 3(3), 993–995.

    Google Scholar 

  13. Morelli, M., & Moretti, M. (Dec., 2008) Integer frequency offset recovery in OFDM transmissions over selective channels. IEEE Transactions on Wireless Communications, 7(12), 5220–5226.

    Google Scholar 

  14. Beek, J. V. D., Edfors, O., Sandell, M., Wilson, S. K., Borjesson, P. O. (1995). On channel estimation in OFDM systems. In IEEE 45th VTC, 25–28 July, 1995 (Vol. 2, pp. 815–819).

    Google Scholar 

  15. Hsieh, M. H., & Wei, C. H. (1999). A low-complexity frame synchronization and frequency offset compensation scheme for OFDM systems over fading channels. IEEE Transaction on Vehicular Technology, 49(5), 1596–1609.

    Article  Google Scholar 

  16. Wang, K., Singh, J., & Faulkner, M. (2004). FPGA implementation of an OFDM WLAN synchronizer. In IEEE International Conference on Field-Programmable Technology (pp. 89–94). Delta.

    Google Scholar 

  17. Zou, H., McNair, B., & Daneshrad, B. (2001). An integrated OFDM receiver for high-speed mobile data communications. IEEE Global Telecommunications Conference, 5, 3090–3094.

    Google Scholar 

  18. Moose, P. H. (1994). A technique for orthogonal frequency division multiplexing frequency offset correction. IEEE Transactions on Communications, 42(10), 2908–2914.

    Google Scholar 

  19. Heiskal, J., & Terry, J. (2002). OFDM wireless LANs: A theoretical and practical guide. Indianapolis, IN: Sams.

    Google Scholar 

  20. Jeon, W. G., Paik, K. H., & Cho, Y. S. (2000, September). An efficient channel estimation technique for OFDM systems with transmitter diversity. In Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK (Vol. 2, pp. 1246–1250).

    Google Scholar 

  21. Ozdemir, M. K., & Arslan, H. (2007). Channel estimation for wireless OFDM systems. IEEE Communications Surveys & Tutorials, 9(2), 18–48.

    Article  Google Scholar 

  22. Rinne, J., & Renfors, M. (1996). Pilot spacing in OFDM systems on practical channels. IEEE Transactions on Consumer Electronics, 42(4), 959–962.

    Article  Google Scholar 

  23. Proakis, J. G. (1995). Digital communications. New York: McGraw-Hill.

    MATH  Google Scholar 

  24. Kang, S. G. (2003). A comparative investigation on channel estimation algorithms for OFDM in mobile communications. IEEE Transactions on Broadcasting, 49(2), 142–149.

    Article  Google Scholar 

  25. Meng, T. H., McFarland, B., Su, D., & Thomson, J. (2003). Design and implementation of an all-CMOS 802.11a wireless LAN chipset. IEEE Communication Magazine, 41(8), 160–168.

    Article  Google Scholar 

  26. Moslehi, M., Foli, E., Hedayati, H., & Entesari, K. (2014). A 1.6 GHz/4.8 GHz dual-band CMOS fractional-N frequency synthesizer for S-band radio applications. In IEEE Radio Frequency Integrated Circuit Symposium (pp. 429–432).

    Google Scholar 

  27. Abdollahi, S., Weber, D., Dogan, H. & Su D. (2011, February). A 65 nm dual-band 3-steam 802.11n MIMO WLAN SoC. In ISSCC Digest of Technical Papers (pp. 170-172).

    Google Scholar 

  28. Lee, C. P., Behzad, A., Ojo, D., Kappes, M., Au, S., Pan, M.-A., et al. (2006). A highly linear direct-conversion transmit mixer transconductance stage with local oscillation feedthrough and I/Q imbalance cancellation scheme. In IEEE ISSCC Digest of Technical Papers (pp. 368-369).

    Google Scholar 

  29. Application note APP3350. (2004). Clock jitter and phase noise conversion. Maxim Integrated. Retrieved from www.maximintegrated.com

    Google Scholar 

  30. Chen, Z., & Dai, F. F. (2010). Effects of LO phase and amplitude imbalances and phase noise on M-QAM transceiver performance. IEEE Transactions on Industrial Electronics, 57(5), 1505–1517.

    Article  Google Scholar 

  31. Feher, K. (1995). Wireless and digital communications; modulation & spread spectrum applications. Upper Saddle River, NJ: Prentice-Hall PTR.

    Google Scholar 

  32. Behzad, A. (2008). Wireless LAN radios—System definition to transistor design (p. 74). Hoboken, NJ: Wiley.

    Google Scholar 

  33. Tanner, R., & Woodard, J. (2004). WCDMA requirements and practical design. Chichester: Wiley.

    Book  Google Scholar 

  34. Geier, J. (2002, June 4). 802.11 MAC layer defined. http://www.wi-fiplanet.com/tutorials/article.php/1216351/80211-MAC-Layer-Defined.htm

  35. He, M., Winoto, R., Gao, X., Loeb, W., Signoff, D., Lau, W., et al. (2014, February). A 40nm dual-band 3-stream 802.11a/b/g/n/ac MIMO WLAN SoC with 1.1Gb/s over-the-air throughput. In IEEE International Solid-State Circuits Conference (ISSCC) (pp. 350-352).

    Google Scholar 

  36. Chen, T. M., Chan, W. C., Lin, C. C., Hsu, J. L., Li, W. K., Wu, P. A., et al. (2013). A 2×2 MIMO 802.11 a/b/g/n/ac WLAN SoC with integrated T/R switch and on-chip PA delivering VHT80 256QAM 17.5 dBm in 55nm CMOS. In IEEE Radio Frequency Integrated Circuits Symposium (pp. 225-228).

    Google Scholar 

  37. Wu, C. H., Chen, T. M., Hong, W. K., Shen, C. H., Hsu, J. L., Tsai, J. C., et al. (2013). A 60nm WiFi/BT/GPS/FM combo connectivity SoC with integrated power amplifiers, virtual SP3T switch, and merged WiFi-BT transceiver. IEEE Radio Frequency Integrated Circuits Symposium, 2013, 129–132.

    Google Scholar 

  38. McCune, E., (2010). Practical Digital Wireless Signals. Cambridge University Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gao, W. (2017). Bandwidth-Efficient Modulation With OFDM. In: Energy and Bandwidth-Efficient Wireless Transmission. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-44222-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44222-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44220-4

  • Online ISBN: 978-3-319-44222-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics