Skip to main content

Hypertrophic Cardiomyopathy

  • Chapter
  • First Online:
Clinical Cardiogenetics

Abstract

Hypertrophic cardiomyopathy (HCM) is the most common monogenetic heart disease affecting over 1 in 500 people worldwide. The hallmark of the disease is left ventricular hypertrophy (LVH) in the absence of abnormal loading conditions that may cause hypertrophy. The disease can present at any age and is highly variable in clinical expression. Patients can remain asymptomatic throughout their life, but HCM is also associated with premature mortality from heart failure, stroke, and sudden cardiac death (SCD). Therapy is mainly directed toward relief of symptoms caused by heart failure and left ventricular outflow tract obstruction. Clinical risk stratification can identify patients at high risk for SCD and is used to select patients for preventative therapy with implantable cardioverter defibrillators.

Because of the hereditary nature of the disease, first degree relatives are advised to undergo periodic cardiac evaluation for the presence of LVH. In about half of all patients, a disease causing mutation can be detected in one of the genes encoding for sarcomeric proteins. Detection of a disease causing mutation allows predictive genetic testing in relatives, and facilitates identification of relatives at risk of developing HCM and associated disease-related complications. Although there is no evidence of a clear benefit of early pharmacological treatment in asymptomatic relatives carrying a mutation, they can still benefit from primary prevention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coats CJ, Hollman A. Hypertrophic cardiomyopathy: lessons from history. Heart. 2008;94(10):1258–63.

    CAS  PubMed  Google Scholar 

  2. Basso C, Calabrese F, Corrado D, Thiene G. Postmortem diagnosis in sudden cardiac death victims: macroscopic, microscopic and molecular findings. Cardiovasc Res. 2001;50(2):290–300.

    CAS  PubMed  Google Scholar 

  3. Drory Y, Turetz Y, Hiss Y, Lev B, Fisman EZ, Pines A, et al. Sudden unexpected death in persons less than 40 years of age. Am J Cardiol. 1991;68(13):1388–92.

    CAS  PubMed  Google Scholar 

  4. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349(11):1064–75.

    CAS  PubMed  Google Scholar 

  5. Hada Y, Sakamoto T, Amano K, Yamaguchi T, Takenaka K, Takahashi H, et al. Prevalence of hypertrophic cardiomyopathy in a population of adult Japanese workers as detected by echocardiographic screening. Am J Cardiol. 1987;59(1):183–4.

    CAS  PubMed  Google Scholar 

  6. Maron BJ, Peterson EE, Maron MS, Peterson JE. Prevalence of hypertrophic cardiomyopathy in an outpatient population referred for echocardiographic study. Am J Cardiol. 1994;73(8):577–80.

    CAS  PubMed  Google Scholar 

  7. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation. 1995;92(4):785–9.

    CAS  PubMed  Google Scholar 

  8. Morita H, Larson MG, Barr SC, Vasan RS, O’Donnell CJ, Hirschhorn JN, et al. Single-gene mutations and increased left ventricular wall thickness in the community: the Framingham Heart Study. Circulation. 2006;113(23):2697–705.

    PubMed  Google Scholar 

  9. Zou Y, Song L, Wang Z, Ma A, Liu T, Gu H, et al. Prevalence of idiopathic hypertrophic cardiomyopathy in China: a population-based echocardiographic analysis of 8080 adults. Am J Med. 2004;116(1):14–8.

    PubMed  Google Scholar 

  10. Semsarian C, Ingles J, Maron MS, Maron BJ. New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol. 2015;65(12):1249–54.

    PubMed  Google Scholar 

  11. Klues HG, Schiffers A, Maron BJ. Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertrophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol. 1995;26(7):1699–708.

    CAS  PubMed  Google Scholar 

  12. Maron BJ, Spirito P, Wesley Y, Arce J. Development and progression of left ventricular hypertrophy in children with hypertrophic cardiomyopathy. N Engl J Med. 1986;315(10):610–4.

    CAS  PubMed  Google Scholar 

  13. Wigle ED, Sasson Z, Henderson MA, Ruddy TD, Fulop J, Rakowski H, et al. Hypertrophic cardiomyopathy. The importance of the site and the extent of hypertrophy. A review. Prog Cardiovasc Dis. 1985;28(1):1–83.

    CAS  PubMed  Google Scholar 

  14. Elliott P, Andersson B, Arbustini E, Bilinska Z, Cecchi F, Charron P, et al. Classification of the cardiomyopathies: a position statement from the European Society Of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29(2):270–6.

    PubMed  Google Scholar 

  15. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary working groups; and Council on Epidemiology and Prevention. Circulation. 2006;113(14):1807–16.

    PubMed  Google Scholar 

  16. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, et al. 2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: the task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35(39):2733–79.

    PubMed  Google Scholar 

  17. McKenna WJ, Spirito P, Desnos M, Dubourg O, Komajda M. Experience from clinical genetics in hypertrophic cardiomyopathy: proposal for new diagnostic criteria in adult members of affected families. Heart. 1997;77(2):130–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Elliott P, Baker R, Pasquale F, Quarta G, Ebrahim H, Mehta AB, et al. Prevalence of Anderson-Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson-Fabry disease survey. Heart. 2011;97(23):1957–60.

    PubMed  Google Scholar 

  19. Limongelli G, Masarone D, D’Alessandro R, Elliott PM. Mitochondrial diseases and the heart: an overview of molecular basis, diagnosis, treatment and clinical course. Future Cardiol. 2012;8(1):71–88.

    PubMed  Google Scholar 

  20. Limongelli G, D’Alessandro R, Maddaloni V, Rea A, Sarkozy A, McKenna WJ. Skeletal muscle involvement in cardiomyopathies. J Cardiovasc Med (Hagerstown). 2013;14(12):837–61.

    CAS  Google Scholar 

  21. Wilkinson JD, Lowe AM, Salbert BA, Sleeper LA, Colan SD, Cox GF, et al. Outcomes in children with Noonan syndrome and hypertrophic cardiomyopathy: a study from the Pediatric Cardiomyopathy Registry. Am Heart J. 2012;164(3):442–8.

    PubMed  Google Scholar 

  22. Quarta CC, Kruger JL, Falk RH. Cardiac amyloidosis. Circulation. 2012;126(12):e178–82.

    PubMed  Google Scholar 

  23. Ruberg FL, Berk JL. Transthyretin (TTR) cardiac amyloidosis. Circulation. 2012;126(10):1286–300.

    PubMed  PubMed Central  Google Scholar 

  24. Teare D. Asymmetrical hypertrophy of the heart in young adults. Br Heart J. 1958;20(1):1–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chevers N. Observations on the diseases of the orifice and valves of the aorta. Guys Hosp Rep. 1842;7:387–442.

    Google Scholar 

  26. Vulpian A. Contribution à l’étude des rétrécissements de l’orifice ventriculo-aortique. Arch Physiol. 1868;3:456–7.

    Google Scholar 

  27. Maron BJ, Wolfson JK, Roberts WC. Relation between extent of cardiac muscle cell disorganization and left ventricular wall thickness in hypertrophic cardiomyopathy. Am J Cardiol. 1992;70(7):785–90.

    CAS  PubMed  Google Scholar 

  28. Maron BJ, Wolfson JK, Epstein SE, Roberts WC. Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol. 1986;8(3):545–57.

    CAS  PubMed  Google Scholar 

  29. Ahmad F, Seidman JG, Seidman CE. The genetic basis for cardiac remodeling. Annu Rev Genomics Hum Genet. 2005;6:185–216.

    CAS  PubMed  Google Scholar 

  30. Tsoutsman T, Lam L, Semsarian C. Genes, calcium and modifying factors in hypertrophic cardiomyopathy. Clin Exp Pharmacol Physiol. 2006;33(1–2):139–45.

    CAS  PubMed  Google Scholar 

  31. Kubo T, Kitaoka H, Okawa M, Matsumura Y, Hitomi N, Yamasaki N, et al. Lifelong left ventricular remodeling of hypertrophic cardiomyopathy caused by a founder frameshift deletion mutation in the cardiac Myosin-binding protein C gene among Japanese. J Am Coll Cardiol. 2005;46(9):1737–43.

    CAS  PubMed  Google Scholar 

  32. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA. 2002;287(10):1308–20.

    PubMed  Google Scholar 

  33. Elliott PM, Gimeno Blanes JR, Mahon NG, Poloniecki JD, McKenna WJ. Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet. 2001;357(9254):420–4.

    CAS  PubMed  Google Scholar 

  34. Maron BJ, Piccininno M, Casey SA, Bernabo P, Spirito P. Relation of extreme left ventricular hypertrophy to age in hypertrophic cardiomyopathy. Am J Cardiol. 2003;91(5):626–8.

    PubMed  Google Scholar 

  35. Maron BJ, Casey SA, Hurrell DG, Aeppli DM. Relation of left ventricular thickness to age and gender in hypertrophic cardiomyopathy. Am J Cardiol. 2003;91(10):1195–8.

    PubMed  Google Scholar 

  36. Biagini E, Coccolo F, Ferlito M, Perugini E, Rocchi G, Bacchi-Reggiani L, et al. Dilated-hypokinetic evolution of hypertrophic cardiomyopathy: prevalence, incidence, risk factors, and prognostic implications in pediatric and adult patients. J Am Coll Cardiol. 2005;46(8):1543–50.

    PubMed  Google Scholar 

  37. Binder J, Ommen SR, Gersh BJ, Van Driest SL, Tajik AJ, Nishimura RA, et al. Echocardiography-guided genetic testing in hypertrophic cardiomyopathy: septal morphological features predict the presence of myofilament mutations. Mayo Clin Proc. 2006;81(4):459–67.

    PubMed  Google Scholar 

  38. Maron BJ, McKenna WJ, Danielson GK, Kappenberger LJ, Kuhn HJ, Seidman CE, et al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation task force on clinical expert consensus documents and the European Society of Cardiology Committee for practice guidelines. J Am Coll Cardiol. 2003;42(9):1687–713.

    PubMed  Google Scholar 

  39. Sanderson JE, Gibson DG, Brown DJ, Goodwin JF. Left ventricular filling in hypertrophic cardiomyopathy. An angiographic study. Br Heart J. 1977;39(6):661–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Olivotto I, Cecchi F, Casey SA, Dolara A, Traverse JH, Maron BJ. Impact of atrial fibrillation on the clinical course of hypertrophic cardiomyopathy. Circulation. 2001;104(21):2517–24.

    CAS  PubMed  Google Scholar 

  41. Autore C, Bernabo P, Barilla CS, Bruzzi P, Spirito P. The prognostic importance of left ventricular outflow obstruction in hypertrophic cardiomyopathy varies in relation to the severity of symptoms. J Am Coll Cardiol. 2005;45(7):1076–80.

    PubMed  Google Scholar 

  42. Maron MS, Olivotto I, Betocchi S, Casey SA, Lesser JR, Losi MA, et al. Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. N Engl J Med. 2003;348(4):295–303.

    PubMed  Google Scholar 

  43. Olivotto I, Maron BJ, Montereggi A, Mazzuoli F, Dolara A, Cecchi F. Prognostic value of systemic blood pressure response during exercise in a community-based patient population with hypertrophic cardiomyopathy. J Am Coll Cardiol. 1999;33(7):2044–51.

    CAS  PubMed  Google Scholar 

  44. Elliott PM, Gimeno JR, Tome MT, Shah J, Ward D, Thaman R, et al. Left ventricular outflow tract obstruction and sudden death risk in patients with hypertrophic cardiomyopathy. Eur Heart J. 2006;27(16):1933–41.

    PubMed  Google Scholar 

  45. Morrow AG, Reitz BA, Epstein SE, Henry WL, Conkle DM, Itscoitz SB, et al. Operative treatment in hypertrophic subaortic stenosis. Techniques, and the results of pre and postoperative assessments in 83 patients. Circulation. 1975;52(1):88–102.

    CAS  PubMed  Google Scholar 

  46. Brown ML, Schaff HV. Surgical management of obstructive hypertrophic cardiomyopathy: the gold standard. Expert Rev Cardiovasc Ther. 2008;6(5):715–22.

    PubMed  Google Scholar 

  47. Faber L, Meissner A, Ziemssen P, Seggewiss H. Percutaneous transluminal septal myocardial ablation for hypertrophic obstructive cardiomyopathy: long term follow up of the first series of 25 patients. Heart. 2000;83(3):326–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Sorajja P, Valeti U, Nishimura RA, Ommen SR, Rihal CS, Gersh BJ, et al. Outcome of alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Circulation. 2008;118(2):131–9.

    PubMed  Google Scholar 

  49. Elliott PM, Poloniecki J, Dickie S, Sharma S, Monserrat L, Varnava A, et al. Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol. 2000;36(7):2212–8.

    CAS  PubMed  Google Scholar 

  50. Maki S, Ikeda H, Muro A, Yoshida N, Shibata A, Koga Y, et al. Predictors of sudden cardiac death in hypertrophic cardiomyopathy. Am J Cardiol. 1998;82(6):774–8.

    CAS  PubMed  Google Scholar 

  51. McKenna W, Deanfield J, Faruqui A, England D, Oakley C, Goodwin J. Prognosis in hypertrophic cardiomyopathy: role of age and clinical, electrocardiographic and hemodynamic features. Am J Cardiol. 1981;47(3):532–8.

    CAS  PubMed  Google Scholar 

  52. Priori SG, Aliot E, Blomstrom-Lundqvist C, Bossaert L, Breithardt G, Brugada P, et al. Task force on sudden cardiac death of the European Society of Cardiology. Eur Heart J. 2001;22(16):1374–450.

    CAS  PubMed  Google Scholar 

  53. Swan DA, Bell B, Oakley CM, Goodwin J. Analysis of symptomatic course and prognosis and treatment of hypertrophic obstructive cardiomyopathy. Br Heart J. 1971;33(5):671–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Koga Y, Itaya K, Toshima H. Prognosis in hypertrophic cardiomyopathy. Am Heart J. 1984;108(2):351–9.

    CAS  PubMed  Google Scholar 

  55. Maron BJ, Spirito P. Impact of patient selection biases on the perception of hypertrophic cardiomyopathy and its natural history. Am J Cardiol. 1993;72(12):970–2.

    CAS  PubMed  Google Scholar 

  56. Elliott PM, Gimeno JR, Thaman R, Shah J, Ward D, Dickie S, et al. Historical trends in reported survival rates in patients with hypertrophic cardiomyopathy. Heart. 2006;92(6):785–91.

    CAS  PubMed  Google Scholar 

  57. Cecchi F, Olivotto I, Montereggi A, Squillatini G, Dolara A, Maron BJ. Prognostic value of non-sustained ventricular tachycardia and the potential role of amiodarone treatment in hypertrophic cardiomyopathy: assessment in an unselected non-referral based patient population. Heart. 1998;79(4):331–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Adabag AS, Casey SA, Kuskowski MA, Zenovich AG, Maron BJ. Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2005;45(5):697–704.

    PubMed  Google Scholar 

  59. Maron BJ, Casey SA, Poliac LC, Gohman TE, Almquist AK, Aeppli DM. Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. JAMA. 1999;281(7):650–5.

    CAS  PubMed  Google Scholar 

  60. Kofflard MJ, Waldstein DJ, Vos J, Ten Cate FJ. Prognosis in hypertrophic cardiomyopathy observed in a large clinic population. Am J Cardiol. 1993;72(12):939–43.

    CAS  PubMed  Google Scholar 

  61. Cannan CR, Reeder GS, Bailey KR, Melton LJI, Gersh BJ. Natural history of hypertrophic cardiomyopathy. A population-based study, 1976 through 1990. Circulation. 1995;92(9):2488–95.

    CAS  PubMed  Google Scholar 

  62. Kyriakidis M, Triposkiadis F, Anastasakis A, Theopistou A, Tocta R, Barbetseas J, et al. Hypertrophic cardiomyopathy in Greece: clinical course and outcome. Chest. 1998;114(4):1091–6.

    CAS  PubMed  Google Scholar 

  63. Maron BJ, Olivotto I, Spirito P, Casey SA, Bellone P, Gohman TE, et al. Epidemiology of hypertrophic cardiomyopathy-related death: revisited in a large non-referral-based patient population. Circulation. 2000;102(8):858–64.

    CAS  PubMed  Google Scholar 

  64. O’Mahony C, Jichi F, Pavlou M, Monserrat L, Anastasakis A, Rapezzi C, et al. A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J. 2014;35(30):2010–20.

    PubMed  Google Scholar 

  65. Charron P, Arad M, Arbustini E, Basso C, Bilinska Z, Elliott P, et al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2010;31(22):2715–26.

    PubMed  Google Scholar 

  66. Ackerman MJ, VanDriest SL, Ommen SR, Will ML, Nishimura RA, Tajik AJ, et al. Prevalence and age-dependence of malignant mutations in the beta-myosin heavy chain and troponin T genes in hypertrophic cardiomyopathy: a comprehensive outpatient perspective. J Am Coll Cardiol. 2002;39(12):2042–8.

    CAS  PubMed  Google Scholar 

  67. Girolami F, Olivotto I, Passerini I, Zachara E, Nistri S, Re F, et al. A molecular screening strategy based on beta-myosin heavy chain, cardiac myosin binding protein C and troponin T genes in Italian patients with hypertrophic cardiomyopathy. J Cardiovasc Med (Hagerstown). 2006;7(8):601–7.

    Google Scholar 

  68. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42(10):e59.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Van Driest SL, Vasile VC, Ommen SR, Will ML, Tajik AJ, Gersh BJ, et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(9):1903–10.

    CAS  PubMed  Google Scholar 

  70. Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ. Yield of genetic testing in hypertrophic cardiomyopathy. Mayo Clin Proc. 2005;80(6):739–44.

    PubMed  Google Scholar 

  71. Erdmann J, Daehmlow S, Wischke S, Senyuva M, Werner U, Raible J, et al. Mutation spectrum in a large cohort of unrelated consecutive patients with hypertrophic cardiomyopathy. Clin Genet. 2003;64(4):339–49.

    CAS  PubMed  Google Scholar 

  72. Richard P, Charron P, Carrier L, Ledeuil C, Cheav T, Pichereau C, et al. Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation. 2003;107(17):2227–32.

    PubMed  Google Scholar 

  73. Van Driest SL, Ommen SR, Tajik AJ, Gersh BJ, Ackerman MJ. Sarcomeric genotyping in hypertrophic cardiomyopathy. Mayo Clin Proc. 2005;80(4):463–9.

    CAS  PubMed  Google Scholar 

  74. Alfares AA, Kelly MA, McDermott G, Funke BH, Lebo MS, Baxter SB, et al. Results of clinical genetic testing of 2,912 probands with hypertrophic cardiomyopathy: expanded panels offer limited additional sensitivity. Genet Med: Off J Am Coll Med Genet. 2015;17(11):880–8.

    Google Scholar 

  75. Bonne G, Carrier L, Bercovici J, Cruaud C, Richard P, Hainque B, et al. Cardiac myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):438–40.

    CAS  PubMed  Google Scholar 

  76. Geisterfer-Lowrance AA, Kass S, Tanigawa G, Vosberg HP, McKenna W, Seidman CE, et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 1990;62(5):999–1006.

    CAS  PubMed  Google Scholar 

  77. Watkins H, Conner D, Thierfelder L, Jarcho JA, MacRae C, McKenna WJ, et al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat Genet. 1995;11(4):434–7.

    CAS  PubMed  Google Scholar 

  78. Watkins H, McKenna WJ, Thierfelder L, Suk HJ, Anan R, O’Donoghue A, et al. Mutations in the genes for cardiac Troponin T and {alpha}-Tropomyosin in hypertrophic cardiomyopathy. N Engl J Med. 1995;332(16):1058–65.

    CAS  PubMed  Google Scholar 

  79. Posch MG, Thiemann L, Tomasov P, Veselka J, Cardim N, Garcia-Castro M, et al. Sequence analysis of myozenin 2 in 438 European patients with familial hypertrophic cardiomyopathy. Med Sci Monit. 2008;14(7):CR372–CR4.

    CAS  PubMed  Google Scholar 

  80. Osio A, Tan L, Chen SN, Lombardi R, Nagueh SF, Shete S, et al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circ Res. 2007;100(6):766–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Vasile VC, Will ML, Ommen SR, Edwards WD, Olson TM, Ackerman MJ. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol Genet Metab. 2006;87(2):169–74.

    CAS  PubMed  Google Scholar 

  82. Theis JL, Bos JM, Bartleson VB, Will ML, Binder J, Vatta M, et al. Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem Biophys Res Commun. 2006;351(4):896–902.

    CAS  PubMed  Google Scholar 

  83. Bos JM, Poley RN, Ny M, Tester DJ, Xu X, Vatta M, et al. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol Genet Metab. 2006;88(1):78–85.

    CAS  PubMed  Google Scholar 

  84. Hayashi T, Arimura T, Itoh-Satoh M, Ueda K, Hohda S, Inagaki N, et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J Am Coll Cardiol. 2004;44(11):2192–201.

    CAS  PubMed  Google Scholar 

  85. Ho CY, Lever HM, DeSanctis R, Farver CF, Seidman JG, Seidman CE. Homozygous mutation in cardiac troponin T: implications for hypertrophic cardiomyopathy. Circulation. 2000;102(16):1950–5.

    CAS  PubMed  Google Scholar 

  86. Lekanne Deprez RH, Muurling-Vlietman JJ, Hruda J, Baars MJ, Wijnaendts LC, Stolte-Dijkstra I, et al. Two cases of severe neonatal hypertrophic cardiomyopathy caused by compound heterozygous mutations in the MYBPC3 gene. J Med Genet. 2006;43(10):829–32.

    CAS  PubMed  Google Scholar 

  87. Richard P, Isnard R, Carrier L, Dubourg O, Donatien Y, Mathieu B, et al. Double heterozygosity for mutations in the beta-myosin heavy chain and in the cardiac myosin binding protein C genes in a family with hypertrophic cardiomyopathy. J Med Genet. 1999;36(7):542–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Richard P, Charron P, Leclercq C, Ledeuil C, Carrier L, Dubourg O, et al. Homozygotes for a R869G mutation in the beta -myosin heavy chain gene have a severe form of familial hypertrophic cardiomyopathy. J Mol Cell Cardiol. 2000;32(8):1575–83.

    CAS  PubMed  Google Scholar 

  89. Girolami F, Ho CY, Semsarian C, Baldi M, Will ML, Baldini K, et al. Clinical features and outcome of hypertrophic cardiomyopathy associated with triple sarcomere protein gene mutations. J Am Coll Cardiol. 2010;55(14):1444–53.

    CAS  PubMed  Google Scholar 

  90. Carrier L, Bonne G, Bahrend E, Yu B, Richard P, Niel F, et al. Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identification of mutations predicted to produce truncated proteins in familial hypertrophic cardiomyopathy. Circ Res. 1997;80(3):427–34.

    CAS  PubMed  Google Scholar 

  91. Richard P, Villard E, Charron P, Isnard R. The Genetic Bases of Cardiomyopathies. J Am Coll Cardiol. 2006;48(9, Supplement 1):A79–89.

    CAS  Google Scholar 

  92. Marian AJ, Mares Jr A, Kelly DP, Yu QT, Abchee AB, Hill R, et al. Sudden cardiac death in hypertrophic cardiomyopathy. Variability in phenotypic expression of beta-myosin heavy chain mutations. Eur Heart J. 1995;16(3):368–76.

    CAS  PubMed  Google Scholar 

  93. Anan R, Greve G, Thierfelder L, Watkins H, McKenna WJ, Solomon S, et al. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J Clin Invest. 1994;93(1):280–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Hwang TH, Lee WH, Kimura A, Satoh M, Nakamura T, Kim MK, et al. Early expression of a malignant phenotype of familial hypertrophic cardiomyopathy associated with a Gly716Arg myosin heavy chain mutation in a Korean family. Am J Cardiol. 1998;82(12):1509–13.

    CAS  PubMed  Google Scholar 

  95. Marian AJ, Roberts R. Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death. J Cardiovasc Electrophysiol. 1998;9(1):88–99.

    CAS  PubMed  Google Scholar 

  96. Watkins H, Rosenzweig A, Hwang DS, Levi T, McKenna W, Seidman CE, et al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N Engl J Med. 1992;326(17):1108–14.

    CAS  PubMed  Google Scholar 

  97. Roberts R, Sigwart U. New concepts in hypertrophic cardiomyopathies, part II. Circulation. 2001;104(18):2249–52.

    CAS  PubMed  Google Scholar 

  98. Fananapazir L, Epstein ND. Genotype-phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical beta-myosin heavy chain gene mutations. Circulation. 1994;89(1):22–32.

    CAS  PubMed  Google Scholar 

  99. Consevage MW, Salada GC, Baylen BG, Ladda RL, Rogan PK. A new missense mutation, Arg719Gln, in the beta-cardiac heavy chain myosin gene of patients with familial hypertrophic cardiomyopathy. Hum Mol Genet. 1994;3(6):1025–6.

    CAS  PubMed  Google Scholar 

  100. Coviello DA, Maron BJ, Spirito P, Watkins H, Vosberg HP, Thierfelder L, et al. Clinical features of hypertrophic cardiomyopathy caused by mutation of a “hot spot” in the alpha-tropomyosin gene. J Am Coll Cardiol. 1997;29(3):635–40.

    CAS  PubMed  Google Scholar 

  101. Havndrup O, Bundgaard H, Andersen PS, Larsen LA, Vuust J, Kjeldsen K, et al. The Val606Met mutation in the cardiac beta-myosin heavy chain gene in patients with familial hypertrophic cardiomyopathy is associated with a high risk of sudden death at young age. Am J Cardiol. 2001;87(11):1315–7.

    CAS  PubMed  Google Scholar 

  102. Epstein ND, Cohn GM, Cyran F, Fananapazir L. Differences in clinical expression of hypertrophic cardiomyopathy associated with two distinct mutations in the beta-myosin heavy chain gene. A 908Leu----Val mutation and a 403Arg----Gln mutation. Circulation. 1992;86(2):345–52.

    CAS  PubMed  Google Scholar 

  103. Van Driest SL, Ackerman MJ, Ommen SR, Shakur R, Will ML, Nishimura RA, et al. Prevalence and severity of “benign” mutations in the beta-myosin heavy chain, cardiac troponin T, and alpha-tropomyosin genes in hypertrophic cardiomyopathy. Circulation. 2002;106(24):3085–90.

    CAS  PubMed  Google Scholar 

  104. Deinum J, van Gool JM, Kofflard MJ, Ten Cate FJ, Danser AH. Angiotensin II type 2 receptors and cardiac hypertrophy in women with hypertrophic cardiomyopathy. Hypertension. 2001;38(6):1278–81.

    CAS  PubMed  Google Scholar 

  105. Osterop AP, Kofflard MJ, Sandkuijl LA, Ten Cate FJ, Krams R, Schalekamp MA, et al. AT1 receptor A/C1166 polymorphism contributes to cardiac hypertrophy in subjects with hypertrophic cardiomyopathy. Hypertension. 1998;32(5):825–30.

    CAS  PubMed  Google Scholar 

  106. Friedrich FW, Bausero P, Sun Y, Treszl A, Kramer E, Juhr D, et al. A new polymorphism in human calmodulin III gene promoter is a potential modifier gene for familial hypertrophic cardiomyopathy. Eur Heart J. 2009;30(13):1648–55.

    CAS  PubMed  Google Scholar 

  107. Monserrat L, Gimeno-Blanes JR, Marin F, Hermida-Prieto M, Garcia-Honrubia A, Perez I, et al. Prevalence of Fabry disease in a cohort of 508 unrelated patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 50(25):2399–403.

    Google Scholar 

  108. Gollob MH, Green MS, Tang AS, Roberts R. PRKAG2 cardiac syndrome: familial ventricular preexcitation, conduction system disease, and cardiac hypertrophy. Curr Opin Cardiol. 2002;17(3):229–34.

    PubMed  Google Scholar 

  109. Rai TS, Ahmad S, Bahl A, Ahuja M, Ahluwalia TS, Singh B, et al. Genotype phenotype correlations of cardiac beta-myosin heavy chain mutations in Indian patients with hypertrophic and dilated cardiomyopathy. Mol Cell Biochem. 2009;321(1–2):189–96.

    CAS  PubMed  Google Scholar 

  110. Forissier JF, Richard P, Briault S, Ledeuil C, Dubourg O, Charbonnier B, et al. First description of germline mosaicism in familial hypertrophic cardiomyopathy. J Med Genet. 2000;37(2):132–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Watkins H, Thierfelder L, Hwang DS, McKenna W, Seidman JG, Seidman CE. Sporadic hypertrophic cardiomyopathy due to de novo myosin mutations. J Clin Invest. 1992;90(5):1666–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Watkins H, Anan R, Coviello DA, Spirito P, Seidman JG, Seidman CE. A de novo mutation in alpha-tropomyosin that causes hypertrophic cardiomyopathy. Circulation. 1995;91(9):2302–5.

    CAS  PubMed  Google Scholar 

  113. Cuda G, Perrotti N, Perticone F, Mattioli PL. A previously undescribed de novo insertion-deletion mutation in the beta myosin heavy chain gene in a kindred with familial hypertrophic cardiomyopathy. Heart. 1996;76(5):451–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Alders M, Jongbloed R, Deelen W, van den Wijngaard A, Doevendans P, Ten Cate F, et al. The 2373insG mutation in the MYBPC3 gene is a founder mutation, which accounts for nearly one-fourth of the HCM cases in the Netherlands. Eur Heart J. 2003;24(20):1848–53.

    CAS  PubMed  Google Scholar 

  115. Michels M, Solima OII, Kofflard MJ, Hoedemaekers YM, Dooijes D, Majoor-Krakauer D, et al. Diastolic abnormalities as the first feature of hypertrophic cardiomyopathy in Dutch myosin-binding protein C founder mutations. J Am Coll Cardiol Img. 2009;2:58–64.

    Google Scholar 

  116. Moolman-Smook JC, De Lange WJ, Bruwer EC, Brink PA, Corfield VA. The origins of hypertrophic cardiomyopathy-causing mutations in two South African subpopulations: a unique profile of both independent and founder events. Am J Hum Genet. 1999;65(5):1308–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Jaaskelainen P, Miettinen R, Karkkainen P, Toivonen L, Laakso M, Kuusisto J. Genetics of hypertrophic cardiomyopathy in eastern Finland: few founder mutations with benign or intermediary phenotypes. Ann Med. 2004;36(1):23–32.

    PubMed  Google Scholar 

  118. Dhandapany PS, Sadayappan S, Xue Y, Powell GT, Rani DS, Nallari P, et al. A common MYBPC3 (cardiac myosin binding protein C) variant associated with cardiomyopathies in South Asia. Nat Genet. 2009;41(2):187–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zahka K, Kalidas K, Simpson MA, Cross H, Keller BB, Galambos C, et al. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish. Heart. 2008;94(10):1326–30.

    CAS  PubMed  Google Scholar 

  120. Mogensen J, van Tintelen JP, Fokstuen S, Elliott P, van Langen IM, Meder B, et al. The current role of next-generation DNA sequencing in routine care of patients with hereditary cardiovascular conditions: a viewpoint paper of the European Society of Cardiology working group on myocardial and pericardial diseases and members of the European Society of Human Genetics. Eur Heart J. 2015;36(22):1367–70.

    PubMed  Google Scholar 

  121. Garneau NL, Wilusz J, Wilusz CJ. The highways and byways of mRNA decay. Nat Rev Mol Cell Biol. 2007;8(2):113–26.

    CAS  PubMed  Google Scholar 

  122. Mearini G, Schlossarek S, Willis MS, Carrier L. The ubiquitin-proteasome system in cardiac dysfunction. Biochim Biophys Acta. 2008;1782(12):749–63.

    CAS  PubMed  Google Scholar 

  123. Chan PA, Duraisamy S, Miller PJ, Newell JA, McBride C, Bond JP, et al. Interpreting missense variants: comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Human mutation. 2007;28(7):683–93.

    CAS  PubMed  Google Scholar 

  124. Goldgar DE, Easton DF, Byrnes GB, Spurdle AB, Iversen ES, Greenblatt MS. Genetic evidence and integration of various data sources for classifying uncertain variants into a single model. Hum Mutat. 2008;29(11):1265–72.

    PubMed  PubMed Central  Google Scholar 

  125. Ortlepp JR, Vosberg HP, Reith S, Ohme F, Mahon NG, Schroder D, et al. Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart. 2002;87(3):270–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Perkins MJ, Van Driest SL, Ellsworth EG, Will ML, Gersh BJ, Ommen SR, et al. Gene-specific modifying effects of pro-LVH polymorphisms involving the renin-angiotensin-aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur Heart J. 2005;26(22):2457–62.

    CAS  PubMed  Google Scholar 

  127. Ingles J, McGaughran J, Scuffham PA, Atherton J, Semsarian C. A cost-effectiveness model of genetic testing for the evaluation of families with hypertrophic cardiomyopathy. Heart. 2012;98(8):625–30.

    PubMed  Google Scholar 

  128. Wordsworth S, Leal J, Blair E, Legood R, Thomson K, Seller A, et al. DNA testing for hypertrophic cardiomyopathy: a cost-effectiveness model. Eur Heart J. 2010;31(8):926–35.

    PubMed  Google Scholar 

  129. Lubitz SA, Ellinor PT. Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm. 2015;12(5):1062–70.

    PubMed  PubMed Central  Google Scholar 

  130. Christiaans I, Birnie E, Bonsel GJ, Wilde AAM, van Langen IM. Uptake of genetic counselling and predictive DNA testing in hypertrophic cardiomyopathy. Eur J Hum Genet. 2008;16(10):1201–7.

    PubMed  Google Scholar 

  131. van der Roest WP, Pennings JM, Bakker M, van den Berg MP, van Tintelen JP. Family letters are an effective way to inform relatives about inherited cardiac disease. Am J Med Genet A. 2009;149a(3):357–63.

    PubMed  Google Scholar 

  132. Christiaans I, Birnie E, Bonsel GJ, Mannens MM, Michels M, Majoor-Krakauer D, et al. Manifest disease, risk factors for sudden cardiac death, and cardiac events in a large nationwide cohort of predictively tested hypertrophic cardiomyopathy mutation carriers: determining the best cardiological screening strategy. Eur Heart J. 2011;32(9):1161–70.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imke Christiaans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Christiaans, I., Elliott, P.M. (2016). Hypertrophic Cardiomyopathy. In: Baars, H., Doevendans, P., Houweling, A., van Tintelen, J. (eds) Clinical Cardiogenetics. Springer, Cham. https://doi.org/10.1007/978-3-319-44203-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44203-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44202-0

  • Online ISBN: 978-3-319-44203-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics