Skip to main content

Thyroid Gland

  • Chapter
  • First Online:
Book cover Atlas of Elastosonography

Abstract

Ultrasound elastography (USE) is used mainly to improve ultrasound efficacy for the characterization of thyroid nodules, e.g., detection of malignancy, and less commonly for evaluation of diffuse diseases, e.g., chronic thyroiditis. The stiffness of the gland depends on the structural properties of the matrix of tissues (cells, membranes, extravascular matrix, microvessels), whereas in conventional ultrasound (US), it is the microscopic structure that determines reflectivity. Thus, elastography provides histologic tissue structure, enabling differentiation of the normal gland from nodules and parenchymal diseases. Tissue stiffness is a feature that reflects the nature of the thyroid nodule; neoplasia and inflammation alter the tissue composition and structure and increase the stiffness [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARFI:

Acoustic radiation force impulse technology

ECI:

Elasticity contrast index

FNAB:

Fine-needle aspiration biopsy

MNSR:

Muscle-to-nodule strain ratio

PNSR:

Parenchyma-to-nodule strain ratio

p-SWE:

Point shear wave elastography

ROI:

Region of interest

SE:

Freehand strain elastography

SR:

Strain ratio

SSI:

Supersonic shear imaging

SWE:

Shear wave elastography

SWS:

Shear wave speed

TI-RADS:

Thyroid Imaging Reporting and Data System

TSI:

Thyroid stiffness index

US:

Ultrasound

USE:

Ultrasound elastography

References

  1. Bamber J, Cosgrove D, Dietrich CF, et al. EFSUMB guidelines and recommendations on the clinical use of ultrasound elastography. Part 1: basic principles and technology. Ultraschall Med. 2013;34(2):169–84.

    Article  CAS  PubMed  Google Scholar 

  2. Shiina T, Nightingale KR, Palmeri ML, et al. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 1: basic principles and terminology. Ultrasound Med Biol. 2015;41(5):1126–47.

    Article  PubMed  Google Scholar 

  3. Remonti LR, Kramer CK, Leitao CB, Pinto LC, Gross JL. Thyroid ultrasound features and risk of carcinoma: a systematic review and meta-analysis of observational studies. Thyroid. 2015;25:538–50.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brander AE, Viikinkoski VP, Nickels JI, Kivisaari LM. Importance of thyroid abnormalities detected at US screening: a 5-year follow-up. Radiology. 2000;215:801–6.

    Article  CAS  PubMed  Google Scholar 

  5. Chammas MC, Gerhard R, de Oliveira IR, Widman A, de Barros N, Durazzo M, Ferraz A, Cerri GG. Thyroid nodules: evaluation with power Doppler and duplex Doppler ultrasound. Otolaryngol Head Neck Surg. 2005;132:874–82.

    Article  PubMed  Google Scholar 

  6. Tramalloni J, Leger A, Correas JM, Monpeyssen H, Szwagier-Uzzan C, Helenon O, Moreau JF. Imaging of thyroid nodules. J Radiol. 1999;80:271–7.

    CAS  PubMed  Google Scholar 

  7. Reading CC, Charboneau JW, Hay ID, Sebo TJ. Sonography of thyroid nodules: a “classic pattern” diagnostic approach. Ultrasound Q. 2005;21:157–65.

    Article  PubMed  Google Scholar 

  8. Haugen BRM, Alexander EK, Bible KC, Doherty G, Mandel SJ, Nikiforov YE, Pacini F, Randolph G, Sawka A, Schlumberger M, Schuff KG, Sherman SI, Sosa JA, Steward D, Tuttle RMM, Wartofsky L. 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;26(1):1–133.

    Article  Google Scholar 

  9. Ferraioli G, Filice C, Castera L, Choi BI, Sporea I, Wilson SR, Cosgrove D, Dietrich CF, Amy D, Bamber JC, Barr R, Chou YH, Ding H, Farrokh A, Friedrich-Rust M, Hall TJ, Nakashima K, Nightingale KR, Palmeri ML, Schafer F, Shiina T, Suzuki S, Kudo M. WFUMB guidelines and recommendations for clinical use of ultrasound elastography: Part 3: liver. Ultrasound Med Biol. 2015;41:1161–79.

    Article  PubMed  Google Scholar 

  10. Tunbridge WM, Evered DC, Hall R, et al. The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol (Oxf). 1977;7(6):481–93.

    Article  CAS  Google Scholar 

  11. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA. 2006;295(18):2164–7.

    Article  CAS  PubMed  Google Scholar 

  12. Sipos JA. Advances in ultrasound for the diagnosis and management of thyroid cancer. Thyroid. 2009;19:1363–72.

    Article  PubMed  Google Scholar 

  13. Iannuccilli JD, Cronan JJ, Monchik JM. Risk for malignancy of thyroid nodules as assessed by sonographic criteria: the need for biopsy. J Ultrasound Med. 2004;23(11):1455–64.

    PubMed  Google Scholar 

  14. Fish SA, Langer JE, Mandel SJ. Sonographic imaging of thyroid nodules and cervical lymph nodes. Endocrinol Metab Clin North Am. 2008;37(2):401–17.

    Article  PubMed  Google Scholar 

  15. Kim HG, Moon HJ, Kwak JY, Kim EK. Diagnostic accuracy of the ultrasonographic features for subcentimeter thyroid nodules suggested by the revised American Thyroid Association guidelines. Thyroid. 2013;23(12):1583–9.

    Article  PubMed  Google Scholar 

  16. Hoang JK, Lee WK, Lee M, Johnson D, Farrell S. US features of thyroid malignancy: pearls and pitfalls. Radiographics. 2007;27(3):847–60, discussion 861–865.

    Article  PubMed  Google Scholar 

  17. Moon H-G, Jung E-J, Park ST, et al. Role of ultrasonography in predicting malignancy in patients with thyroid nodules. World J Surg. 2007;31(7):1410–6.

    Article  PubMed  Google Scholar 

  18. Horvath E, Majlis S, Rossi R, Franco C, Niedmann JP, Castro A, Dominguez M. An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J Clin Endocrinol Metab. 2009;94:1748–51.

    Article  CAS  PubMed  Google Scholar 

  19. Kwak JY, Han KH, Yoon JH, Moon HJ, Son EJ, Park SH, Jung HK, Choi JS, Kim BM, Kim EK. Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology. 2011;260:892–9.

    Article  PubMed  Google Scholar 

  20. Tee YY, Lowe AJ, Brand CA, Judson RT. Fine-needle aspiration may miss a third of all malignancy in palpable thyroid nodules: a comprehensive literature review. Ann Surg. 2007;246(5):714–20.

    Article  PubMed  Google Scholar 

  21. Peng Y, Wang HH. A meta-analysis of comparing fine-needle aspiration and frozen section for evaluating thyroid nodules. Diagn Cytopathol. 2008;36(12):916–20.

    Article  PubMed  Google Scholar 

  22. Oertel YC, Miyahara-Felipe L, Mendoza MG, Yu K. Value of repeated fine needle aspirations of the thyroid: an analysis of over ten thousand FNAs. Thyroid. 2007;17(11):1061–6.

    Article  PubMed  Google Scholar 

  23. Lyshchik A, Higashi T, Asato R, Tanaka S, Ito J, Mai J, Pellot-Barakat C, Insana M, Brill A, Saga T, Hiraoka M, Togashi K. Thyroid gland tumor diagnosis at US elastography. Radiology. 2005;237:202–11.

    Article  PubMed  Google Scholar 

  24. Ahuja AT. Lupmps and bumps in the head and neck. In: Ahuja AT, Evans R, editors. Practical head and neck ultrasound. London: Greenwich Medical Media Limited; 2000. p. 87–106.

    Chapter  Google Scholar 

  25. Bhatia KS, Rasalkar DD, Lee YP, Wong KT, King AD, Yuen YH, Ahuja AT. Real-time qualitative ultrasound elastography of miscellaneous non-nodal neck masses: applications and limitations. Ultrasound Med Biol. 2010;36:1644–52.

    Article  PubMed  Google Scholar 

  26. Carlsen J, Ewertsen C, Sletting S, Vejborg I, Schäfer FK, Cosgrove D, Bachmann Nielsen M. Ultrasound elastography in breast cancer diagnosis. Ultraschall Med. 2015;36(6):550–62.

    Article  CAS  PubMed  Google Scholar 

  27. Cantisani V, Consorti F, Guerrisi A, et al. Prospective comparative evaluation of quantitative-elastosonography (Q-elastography) and contrast-enhanced ultrasound for the evaluation of thyroid nodules: preliminary experience. Eur J Radiol. 2013;82(11):1892–8.

    Article  CAS  PubMed  Google Scholar 

  28. Rago T, Vitti P. Potential value of elastosonography in the diagnosis of malignancy in thyroid nodules. Q J Nucl Med Mol Imaging. 2009;53(5):455–64.

    CAS  PubMed  Google Scholar 

  29. Ueno E, Itoh A. Diagnosis of breast cancer by elasticity imaging. Eizo Joho Medical. 2004;36(12):2–6.

    Google Scholar 

  30. Rubaltelli L, Corradin S, Dorigo A, et al. Differential diagnosis of benign and malignant thyroid nodules at elastosonography. Ultraschall Med. 2009;30(2):175–9.

    Article  CAS  PubMed  Google Scholar 

  31. Rago T, Santini F, Scutari M, Pinchera A, Vitti P. Elastography: new developments in ultrasound for predicting malignancy in thyroid nodules. J Clin Endocrinol Metab. 2007;92(8):2917–22.

    Article  CAS  PubMed  Google Scholar 

  32. Itoh A, Ueno E, Tohno E, et al. Breast disease: clinical application of US elastography for diagnosis. Radiology. 2006;239(2):341–50.

    Article  PubMed  Google Scholar 

  33. Moon HJ, Sung JM, Kim EK, Yoon JH, Youk JH, Kwak JY. Diagnostic performance of gray-scale US and elastography in solid thyroid nodules. Radiology. 2012;262(3):1002–13.

    Article  PubMed  Google Scholar 

  34. Rago T, Di Coscio G, Basolo F, Scutari M, Elisei R, Berti P, Miccoli P, Romani R, Faviana P, Pinchera A, Vitti P. Combined clinical, thyroid ultrasound and cytological features help to predict thyroid malignancy in follicular and Hupsilonrthle cell thyroid lesions: results from a series of 505 consecutive patients. Clin Endocrinol (Oxf). 2007;66:13–20.

    CAS  Google Scholar 

  35. Rago T, Vitti P. Role of thyroid ultrasound in the diagnostic evaluation of thyroid nodules. Best Pract Res Clin Endocrinol Metab. 2008;22:913–28.

    Article  PubMed  Google Scholar 

  36. Ning CP, Jiang SQ, Zhang T, Sun LT, Liu YJ, Tian JW. The value of strain ratio in differential diagnosis of thyroid solid nodules. Eur J Radiol. 2012;81(2):286–91.

    Article  PubMed  Google Scholar 

  37. Park SH, Kim SJ, Kim EK, Kim MJ, Son EJ, Kwak JY. Interobserver agreement in assessing the sonographic and elastographic features of malignant thyroid nodules. AJR Am J Roentgenol. 2009;193(5):W416–23.

    Article  PubMed  Google Scholar 

  38. Kim JK, Baek JH, Lee JH, et al. Ultrasound elastography for thyroid nodules: a reliable study? Ultrasound Med Biol. 2012;38(9):1508–13.

    Article  PubMed  Google Scholar 

  39. Chong Y, Shin JH, Ko ES, Han BK. Ultrasonographic elastography of thyroid nodules: is adding strain ratio to colour mapping better? Clin Radiol. 2013;68:1241–6.

    Article  CAS  PubMed  Google Scholar 

  40. Vorländer C, Wolff J, Saalabian S, Lienenlüke RH, Wahl RA. Real-time ultrasound elastography – a noninvasive diagnostic procedure for evaluating dominant thyroid nodules. Langenbecks Arch Surg. 2010;395(7):865–71.

    Article  PubMed  Google Scholar 

  41. Ding J, Cheng HD, Huang J, Zhang Y, Liu J. An improved quantitative measurement for thyroid cancer detection based on elastography. Eur J Radiol. 2012;81(4):800–5.

    Article  PubMed  Google Scholar 

  42. Dudea SM, Botar-Jid C. Ultrasound elastography in thyroid disease. Med Ultrasound. 2015;17(1):74–96.

    Google Scholar 

  43. Cakir B, Aydin C, Korukluoğlu B, et al. Diagnostic value of elastosonographically determined strain index in the differential diagnosis of benign and malignant thyroid nodules. Endocrine. 2011;39(1):89–98.

    Article  CAS  PubMed  Google Scholar 

  44. Ciledag N, Arda K, Aribas BK, Aktas E, Köse SK. The utility of ultrasound elastography and MicroPure imaging in the differentiation of benign and malignant thyroid nodules. AJR Am J Roentgenol. 2012;198(3):W244–9.

    Article  PubMed  Google Scholar 

  45. Xing P, Wu L, Zhang C, Li S, Liu C, Wu C. Differentiation of benign from malignant thyroid lesions: calculation of the strain ratio on thyroid sonoelastography. J Ultrasound Med. 2011;30(5):663–9.

    PubMed  Google Scholar 

  46. Cantisani V, D’Andrea V, Biancari F, Medvedyeva O, Di Segni M, Olive M, Patrizi G, Redler A, De Antoni EE, Masciangelo R, Frezzotti F, Ricci P. Prospective evaluation of multiparametric ultrasound and quantitative elastosonography in the differential diagnosis of benign and malignant thyroid nodules: preliminary experience. Eur J Radiol. 2012;81:2678–83.

    Article  PubMed  Google Scholar 

  47. Cantisani V, Grazhdani H, Drakonaki E, D’Andrea V, Di Segni M, Kaleshi E, Calliada F, Catalano C, Redler A, Brunese L, Drudi FM, Fumarola A, Carbotta G, Frattaroli F, Di Leo N, Ciccariello M, Caratozzolo M, D’Ambrosio F. Strain US elastography for the characterization of thyroid nodules: advantages and limitation. Int J Endocrinol. 2015;2015:908575.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ding J, Cheng H, Ning C, Huang J, Zhang Y. Quantitative measurement for thyroid cancer characterization based on elastography. J Ultrasound Med. 2011;30:1259–66.

    PubMed  Google Scholar 

  49. Kagoya R, Monobe H, Tojima H. Utility of elastography for differential diagnosis of benign and malignant thyroid nodules. Otolaryngol Head Neck Surg. 2010;143:230–4.

    Article  PubMed  Google Scholar 

  50. Aydin R, Elmali M, Polat AV, Danaci M, Akpolat I. Comparison of muscle-to-nodule and parenchyma-to-nodule strain ratios in the differentiation of benign and malignant thyroid nodules: which one should we use? Eur J Radiol. 2014;83:e131–6.

    Article  PubMed  Google Scholar 

  51. Lim DJ, Luo S, Kim MH, Ko SH, Kim Y. Interobserver agreement and intraobserver reproducibility in thyroid ultrasound elastography. AJR Am J Roentgenol. 2012;198(4):896–901.

    Article  PubMed  Google Scholar 

  52. Dighe M, Bae U, Richardson ML, Dubinsky TJ, Minoshima S, Kim Y. Differential diagnosis of thyroid nodules with US elastography using carotid artery pulsation. Radiology. 2008;248(2):662–9.

    Article  PubMed  Google Scholar 

  53. Luo S, Kim EH, Dighe M, Kim Y. Screening of thyroid nodules by ultrasound elastography using diastolic strain variation. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4420–3.

    PubMed  Google Scholar 

  54. Dighe M, Kim J, Luo S, Kim Y. Utility of the ultrasound elastographic systolic thyroid stiffness index in reducing fine-needle aspirations. J Ultrasound Med. 2010;29(4):565–74.

    PubMed  Google Scholar 

  55. Dighe M, Luo S, Cuevas C, Kim Y. Efficacy of thyroid ultrasound elastography in differential diagnosis of small thyroid nodules. Eur J Radiol. 2013;82(6):e274–80.

    Article  PubMed  Google Scholar 

  56. Luo S, Lim DJ, Kim Y. Objective ultrasound elastography scoring of thyroid nodules using spatiotemporal strain information. Med Phys. 2012;39(3):1182–9.

    Article  PubMed  Google Scholar 

  57. Cantisani V, Lodise P, Grazhdani H, Mancuso E, Maggini E, Di Rocco G, D’Ambrosio F, Calliada F, Redler A, Ricci P, Catalano C. Ultrasound elastography in the evaluation of thyroid pathology. Current status. Eur J Radiol. 2014;83:420–8.

    Article  PubMed  Google Scholar 

  58. Shuzhen C. Comparison analysis between conventional ultrasonography and ultrasound elastography of thyroid nodules. Eur J Radiol. 2012;81:1806–11.

    Article  PubMed  Google Scholar 

  59. Barr RG, Lackey AE. The utility of the “bull’s-eye” artifact on breast elasticity imaging in reducing breast lesion biopsy rate. Ultrasound Q. 2011;27(3):151–5.

    Article  PubMed  Google Scholar 

  60. Tranquart F, Bleuzen A, Pierre-Renoult P, Chabrolle C, Sam Giao M, Lecomte P. Elastosonography of thyroid lesions. J Radiol. 2008;89:35–9.

    Article  CAS  PubMed  Google Scholar 

  61. Wang HL, Zhang S, Xin XJ, Zhao LH, Li CX, Mu JL, Wei XQ. Application of real-time ultrasound elastography in diagnosing benign and malignant thyroid solid nodules. Cancer Biol Med. 2012;9:124–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Merino S, Arrazola J, Cárdenas A, et al. Utility and interobserver agreement of ultrasound elastography in the detection of malignant thyroid nodules in clinical care. AJNR Am J Neuroradiol. 2011;32(11):2142–8.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Y, Dan HJ, Dan HY, Li T, Hu B. Differential diagnosis of small single solid thyroid nodules using real-time ultrasound elastography. J Int Med Res. 2010;38(2):466–72.

    Article  CAS  PubMed  Google Scholar 

  64. Bhatia KS, Rasalkar DP, Lee YP, et al. Cystic change in thyroid nodules: a confounding factor for real-time qualitative thyroid ultrasound elastography. Clin Radiol. 2011;66(9):799–807.

    Article  CAS  PubMed  Google Scholar 

  65. Garra BS. Elastography: current status, future prospects, and making it work for you. Ultrasound Q. 2011;27(3):177–86.

    Article  PubMed  Google Scholar 

  66. Barr RG. Breast elastography. New York: Thieme; 2014.

    Google Scholar 

  67. Liu BX, Xie XY, Liang JY, et al. Shear wave elastography versus real-time elastography on evaluation thyroid nodules: a preliminary study. Eur J Radiol. 2014;83(7):1135–43.

    Article  PubMed  Google Scholar 

  68. Sporea I, Sirli R, Bota S, Vlad M, Popescu A, Zosin I. ARFI elastography for the evaluation of diffuse thyroid gland pathology: preliminary results. World J Radiol. 2012;4(4):174–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Park AY, Son EJ, Han K, Youk JH, Kim JA, Park CS. Shear wave elastography of thyroid nodules for the prediction of malignancy in a large scale study. Eur J Radiol. 2015;84(3):407–12.

    Article  PubMed  Google Scholar 

  70. Veyrieres JB, Albarel F, Lombard JV, et al. A threshold value in Shear Wave elastography to rule out malignant thyroid nodules: a reality? Eur J Radiol. 2012;81(12):3965–72.

    Article  PubMed  Google Scholar 

  71. Friedrich-Rust M, Romenski O, Meyer G, Dauth N, Holzer K, Grunwald F, Kriener S, Herrmann E, Zeuzem S, Bojunga J. Acoustic Radiation Force Impulse-Imaging for the evaluation of the thyroid gland: a limited patient feasibility study. Ultrasonics. 2012;52:69–74.

    Article  PubMed  Google Scholar 

  72. Fukuhara T, Matsuda E, Endo Y, Takenobu M, Izawa S, Fujiwara K, Kitano H. Correlation between quantitative shear wave elastography and pathologic structures of thyroid lesions. Ultrasound Med Biol. 2015;41:2326–32.

    Article  PubMed  Google Scholar 

  73. Bhatia KS, Tong CS, Cho CC, Yuen EH, Lee YY, Ahuja AT. Shear wave elastography of thyroid nodules in routine clinical practice: preliminary observations and utility for detecting malignancy. Eur Radiol. 2012;22(11):2397–406.

    Article  PubMed  Google Scholar 

  74. Sebag F, Vaillant-Lombard J, Berbis J, et al. Shear wave elastography: a new ultrasound imaging mode for the differential diagnosis of benign and malignant thyroid nodules. J Clin Endocrinol Metab. 2010;95(12):5281–8.

    Article  CAS  PubMed  Google Scholar 

  75. Slapa RZ, Piwowonski A, Jakubowski WS, et al. Shear wave elastography may add a new dimension to ultrasound evaluation of thyroid nodules: case series with comparative evaluation. J Thyroid Res. 2012;2012:657147.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Grazhdani H, Cantisani V, Lodise P, Di Rocco G, Proietto MC, Fioravanti E, Rubini A, Redler A. Prospective evaluation of acoustic radiation force impulse technology in the differentiation of thyroid nodules: accuracy and interobserver variability assessment. J Ultrasound. 2014;17:13–20.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Magri F, Chytiris S, Capelli V, et al. Shear wave elastography in the diagnosis of thyroid nodules: feasibility in the case of coexistent chronic autoimmune Hashimoto’s thyroiditis. Clin Endocrinol (Oxf). 2012;76(1):137–41.

    Article  Google Scholar 

  78. Gu J, Du L, Bai M, et al. Preliminary study on the diagnostic value of acoustic radiation force impulse technology for differentiating between benign and malignant thyroid nodules. J Ultrasound Med. 2012;31(5):763–71.

    PubMed  Google Scholar 

  79. Zhan J, Jin JM, Diao XH, Chen Y. Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules-A meta-analysis. Eur J Radiol. 2015;84:2181–6.

    Article  PubMed  Google Scholar 

  80. Lin P, Chen M, Liu B, Wang S, Li X. Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur Radiol. 2014;24:2729–38.

    Article  PubMed  Google Scholar 

  81. Zhang YF, Xu HX, He Y, Liu C, Guo LH, Liu LN, Xu JM. Virtual touch tissue quantification of acoustic radiation force impulse: a new ultrasound elastic imaging in the diagnosis of thyroid nodules. PLoS One. 2012;7:e49094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rago T, Scutari M, Santini F, et al. Real-time elastosonography: useful tool for refining the presurgical diagnosis in thyroid nodules with indeterminate or nondiagnostic cytology. J Clin Endocrinol Metab. 2010;95(12):5274–80.

    Article  CAS  PubMed  Google Scholar 

  83. Xu JM, Xu HX, Xu XH, Liu C, Zhang YF, Guo LH, Liu LN, Zhang J. Solid hypo-echoic thyroid nodules on ultrasound: the diagnostic value of acoustic radiation force impulse elastography. Ultrasound Med Biol. 2014;40:2020–30.

    Article  PubMed  Google Scholar 

  84. Bojunga J, Dauth N, Berner C, et al. Acoustic radiation force impulse imaging for differentiation of thyroid nodules. PLoS One. 2012;7(8):e42735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tatar IG, Kurt A, Yilmaz KB, Akinci M, Kulacoglu H, Hekimoglu B. The learning curve of real time elastosonography: a preliminary study conducted for the assessment of malignancy risk in thyroid nodules. Med Ultrason. 2013;15:278–84.

    Article  PubMed  Google Scholar 

  86. Hegedüs L. Can elastography stretch our understanding of thyroid histomorphology? J Clin Endocrinol Metab. 2010;95(12):5213–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vito Cantisani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cantisani, V. et al. (2017). Thyroid Gland. In: Clevert, DA., D'Onofrio, M., Quaia, E. (eds) Atlas of Elastosonography. Springer, Cham. https://doi.org/10.1007/978-3-319-44201-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44201-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44199-3

  • Online ISBN: 978-3-319-44201-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics