Advertisement

Leveraging Neurodata to Support Web User Behavior Analysis

  • Pablo Loyola
  • Enzo Brunetti
  • Gustavo Martinez
  • Juan D. VelásquezEmail author
  • Pedro Maldonado
Chapter
Part of the Web Information Systems Engineering and Internet Technologies Book Series book series (WISE)

Abstract

Given its complexity, understanding the behavior of users on the Web has been one of the most challenging tasks for data mining-related fields. Historically, most of the approaches have considered web logs as the main source of data. This has led to several successful cases, both in industry and academia, but has also presented several issues and limitations. Given the new challenges and the need for personalization, improvement is required in the overall understanding of the processes that lie behind web browsing decision making. The use of neurodata to support this analysis represents a huge opportunity in terms of understanding the actions taken by the user on the web in a more comprehensive way. Techniques such as eye tracking, pupil dilation and EEG analysis could provide valuable information to craft more robust models. This chapter overviews the current state of the art of the use of neurodata for web-based analysis, providing a description and analysis in terms of the feasibility and effectiveness of each strategy given a specific problem.

Keywords

Sentiment Analysis Visual Exploration User Session Implicit Feedback User Attention 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge the continuous support of the Chilean Millennium Institute of Complex Engineering Systems (ICM: P-05-004-F, CONICYT: FBO16), the Fondecyt Project 1160117, and the FONDEF-CONICYT CA12I10061 - AKORI project.

References

  1. 1.
    E.W. Anderson, K.C. Potter, L.E. Matzen, J.F. Shepherd, G. Preston, C.T. Silva. A user study of visualization effectiveness using eeg and cognitive load, in Computer Graphics Forum, vol. 30 (Wiley Online Library, 2011), pp. 791–800Google Scholar
  2. 2.
    J.R. Anderson, R.S. Michalski, R.S. Michalski, T.M. Mitchell, et al. Machine Learning: An Artificial Intelligence Approach, vol. 2 (Morgan Kaufmann, 1986)Google Scholar
  3. 3.
    T. Arce, P.E. Román, J. Velásquez, V. Parada, Identifying web sessions with simulated annealing. Expert Syst. Appl. 41(4, Part 2), 1593–1600 (2014)Google Scholar
  4. 4.
    T. Baccino, Eye Movements and Concurrent Event-Related Potentials: Eye Fixation-Related Potential Investigations in Reading (Oxford University Press, New York, NY, USA, 2011)Google Scholar
  5. 5.
    T. Baccino, V. Drai-Zerbib, A new cognitive engineering technique: eye-fixation-related potentials, in The 5th PSU-UNS International Conference on Engineering and Technology (ICET-2011) (2011)Google Scholar
  6. 6.
    R. Baeza-Yates, C. Castillo, E.N. Efthimiadis, Characterization of national web domains. ACM Trans. Internet Technol. (TOIT) 7(2), 9 (2007)CrossRefGoogle Scholar
  7. 7.
    Y. Bengio, Learning deep architectures for ai. Found. Trends Mach. Learn. 2(1), 1–127 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Y. Bengio, A. Courville, P. Vincent, Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Bengio, Y. LeCun, et al. Scaling learning algorithms towards ai. Large-scale Kernel Mach. 34(5) (2007)Google Scholar
  10. 10.
    J.M. Benítez, J.L. Castro, I. Requena, Are artificial neural networks black boxes? IEEE Trans. Neural Netw. 8(5), 1156–1164 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Bensch, A.A. Karim, J. Mellinger, T. Hinterberger, M. Tangermann, M. Bogdan, W. Rosenstiel, N. Birbaumer, Nessi: an eeg-controlled web browser for severely paralyzed patients. Comput. Intell. Neurosci. (2007)Google Scholar
  12. 12.
    B. Berendt, B. Mobasher, M. Nakagawa, M. Spiliopoulou. The impact of site structure and user environment on session reconstruction in web usage analysis, in WEBKDD 2002—Mining Web Data for Discovering Usage Patterns and Profiles (Springer, 2003), pp. 159–179Google Scholar
  13. 13.
    H. Berger, Uber das Elektrenkephalogramm des Menschen. Archiv fur Psychiatrie und Nervenkrankheiten 17(6–7), 777–789 (2009). AugGoogle Scholar
  14. 14.
    T. Berners-Lee, J. Hendler, O. Lassila et al., The semantic web. Sci. Am. 284(5), 28–37 (2001)CrossRefGoogle Scholar
  15. 15.
    G. Boening, K. Bartl, T. Dera, S. Bardins, E. Schneider, T. Brandt. Mobile eye tracking as a basis for real-time control of a gaze driven head-mounted video camera, in Proceedings of the 2006 Symposium on Eye Tracking Research & Applications (ACM, 2006), p. 56Google Scholar
  16. 16.
    A.M. Brouwer, B. Reuderink, J. Vincent, M.A. van Gerven, J.B. van Erp, Distinguishing between target and nontarget fixations in a visual search task using fixation-related potentials. J Vis 13(3), 17 (2013)CrossRefGoogle Scholar
  17. 17.
    G. Buscher, E. Cutrell, M.R. Morris, What do you see when you’re surfing?: Using eye tracking to predict salient regions of web pages, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’09, New York, NY, USA (ACM, 2009), pp. 21–30Google Scholar
  18. 18.
    G. Buscher, A. Dengel, R. Biedert, L.V. Elst, Attentive documents: eye tracking as implicit feedback for information retrieval and beyond. ACM Trans. Interact. Intell. Syst. 1(2), 9:1–9:30 (2012)Google Scholar
  19. 19.
    G. Buscher, S.T. Dumais, E. Cutrell, The good, the bad, and the random: an eye-tracking study of ad quality in web search, in Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’10, New York, NY, USA (ACM, 2010), pp. 42–49Google Scholar
  20. 20.
    G.T. Buswell, How People Look at Pictures: A Study of the Psychology of Perception in Art (University of Chicago Press, Chicago, USA, 1935)Google Scholar
  21. 21.
    G. Buzsaki, Rhythms of the Brain (Oxford University Press, New York, NY, USA, 2006)zbMATHCrossRefGoogle Scholar
  22. 22.
    G. Buzsaki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304(5679), 1926–1929 (2004)CrossRefGoogle Scholar
  23. 23.
    M.C. Chen, J.R. Anderson, M.H. Sohn. What can a mouse cursor tell us more?: correlation of eye/mouse movements on web browsing, in CHI’01 extended abstracts on Human factors in computing systems (ACM, 2001), pp. 281–282Google Scholar
  24. 24.
    M. Corbetta, G.L. Shulman, Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3(3), 201–215 (2002)CrossRefGoogle Scholar
  25. 25.
    R.F. Dell, P.E. Román, J.D. Velásquez. Web user session reconstruction using integer programming, in IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2008. WI-IAT’08, vol. 1 (IEEE, 2008), pp. 385–388Google Scholar
  26. 26.
    H. Deubel, W.X. Schneider, Saccade target selection and object recognition: evidence for a common attentional mechanism. Vis. Res. 36(12), 1827–1837 (1996)CrossRefGoogle Scholar
  27. 27.
    D.T. Duchowski, Eye Tracking Methodology (Springer, London, UK, 2006)zbMATHGoogle Scholar
  28. 28.
    D. Easley, J. Kleinberg, Networks, Crowds, and Markets, vol. 8 (Cambridge Univ Press, 2010)Google Scholar
  29. 29.
    K.A. Ehinger, B. Hidalgo-Sotelo, A. Torralba, A. Oliva, Modeling search for people in 900 scenes: a combined source model of eye guidance. Vis. Cogn. 17(6–7), 945–978 (2009)CrossRefGoogle Scholar
  30. 30.
    T. Foulsham, G. Underwood, What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J. Vis. 8(2), 1–17 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Frey, G. Ionescu, B. Lemaire, F. Lopez-Orozco, T. Baccino, A. Guerin-Dugue, Decision-making in information seeking on texts: an eye-fixation-related potentials investigation. Front Syst. Neurosci. 7, 39 (2013)CrossRefGoogle Scholar
  32. 32.
    Q. Guo, E. Agichtein, Towards predicting web searcher gaze position from mouse movements, in CHI’10 Extended Abstracts on Human Factors in Computing Systems (ACM, 2010)Google Scholar
  33. 33.
    G. Healy, A.F. Smeaton, Eye fixation related potentials in a target search task. Conf. Proc. IEEE Eng. Med. Biol. Soc. 4203–4206 (2011)Google Scholar
  34. 34.
    D.A. Hensher, Atribute Processing, Heuristics, and Preference Construction in Choice Analysis (Bingley, Emerald, UK, 2010)Google Scholar
  35. 35.
    S.A. Hillyard, E.K. Vogel, S.J. Luck, Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 353(1373), 1257–1270 (1998)Google Scholar
  36. 36.
    J.E. Hoffman, B. Subramaniam, The role of visual attention in saccadic eye movements. Percept. Psychophys. 57(6), 787–795 (1995)CrossRefGoogle Scholar
  37. 37.
    J. Huang, R. White, G. Buscher, User see, user point: gaze and cursor alignment in web search, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’12, New York, NY, USA (ACM, 2012), pp. 1341–1350Google Scholar
  38. 38.
    J. Huang, R.W. White, G.Buscher, K. Wang, Improving searcher models using mouse cursor activity, in Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR’12, New York, NY, USA (ACM, 2012), pp. 195–204Google Scholar
  39. 39.
    G. Iachello, J. Hong, End-user privacy in human-computer interaction. Found. Trends Human-Comput. Interact. 1(1), 1–137 (2007)zbMATHCrossRefGoogle Scholar
  40. 40.
    N. Indurkhya, F.J. Damerau, Handbook of Natural Language Processing, vol. 2 (CRC Press, 2010)Google Scholar
  41. 41.
    P.G. Ipeirotis, L. Gravano, When one sample is not enough: improving text database selection using shrinkage, in Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data (ACM, 2004), pp. 767–778Google Scholar
  42. 42.
    D.E. Irwin, Visual Memory Within and Across Fixations (Springer, New York, NY, USA, 1992)CrossRefGoogle Scholar
  43. 43.
    L. Itti, C. Koch, A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40(10–12), 1489–1506 (2000)CrossRefGoogle Scholar
  44. 44.
    W. James, The Principles of Psychology, vol. I (Harvard University Press, Cambridge, MA, USA, 1981)Google Scholar
  45. 45.
    S. Janzen, W. Maass, Ontology-based natural language processing for in-store shopping situations, in IEEE International Conference on Semantic Computing, 2009, ICSC’09 (IEEE, 2009), pp. 361–366Google Scholar
  46. 46.
    J.E. Kamienkowski, M.J. Ison, R.Q. Quiroga, M. Sigman, Fixation-related potentials in visual search: a combined EEG and eye tracking study. J. Vis. 12(7), 4 (2012)CrossRefGoogle Scholar
  47. 47.
    E. Kowler, Eye movements: the past 25 years. Vis. Res. 51(13), 1457–1483 (2011)CrossRefGoogle Scholar
  48. 48.
    E. Kowler, E. Anderson, B. Dosher, E. Blaser, The role of attention in the programming of saccades. Vis. Res. 35(13), 1897–1916 (1995)CrossRefGoogle Scholar
  49. 49.
    I. Krajbich, C. Armel, A. Rangel, Visual fixations and the computation and comparison of value in simple choice. Nat. Neurosci. 13(10), 1292–1298 (2010)CrossRefGoogle Scholar
  50. 50.
    V.V. Kryssanov, K. Kakusho, E.L. Kuleshov, M. Minoh, Modeling hypermedia-based communication. Inf. Sci. 174(1), 37–53 (2005)CrossRefGoogle Scholar
  51. 51.
    M. Kudelka, V. Snasel, Z. Horak, A. Ella Hassanien, A. Abraham, J.D. Velásquez, A novel approach for comparing web sites by using microgenres. Eng. Appl. Artif. Intell. 35, 187–198 (2014)CrossRefGoogle Scholar
  52. 52.
    Y. Lee, Handwritten digit recognition using k nearest-neighbor, radial-basis function, and backpropagation neural networks. Neural Comput. 3(3), 440–449 (1991)CrossRefGoogle Scholar
  53. 53.
    P. Loyola, G. Martínez, K. Muñoz, J.D. Velásquez, P. Maldonado, A. Couve, Combining eye tracking and pupillary dilation analysis to identify website key objects. Neurocomputing 168, 179–189 (2015)CrossRefGoogle Scholar
  54. 54.
    P. Loyola, J.D. Velásquez, Characterizing web user visual gaze patterns: A graph theory inspired approach, in Brain Informatics and Health (Springer International Publishing, 2014), pp. 586–594Google Scholar
  55. 55.
    S.J. Luck, An Introduction to the Event-Related Potential Technique (MIT Press, Cambridge, MA, USA, 2005)Google Scholar
  56. 56.
    S.J. Luck, S.A. Hillyard, Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31(3), 291–308 (1994)CrossRefGoogle Scholar
  57. 57.
    S.J. Luck, S.A. Hillyard, Spatial filtering during visual search: evidence from human electrophysiology. J. Exp. Psychol. Hum. Percept. Perform. 20(5), 1000–1014 (1994)CrossRefGoogle Scholar
  58. 58.
    H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A.M. Hrafnkelsson, T. Boulos, J. Kubica, Ad click prediction: a view from the trenches, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’13, New York, NY, USA (ACM, 2013), pp. 1222–1230Google Scholar
  59. 59.
    M. Moloney, F. Bannister, A privacy control theory for online environments, in 42nd Hawaii International Conference on System Sciences, 2009. HICSS’09 (IEEE, 2009), pp. 1–10Google Scholar
  60. 60.
    K.P. Murphy, Machine Learning: A Probabilistic Perspective (The MIT Press, 2012)Google Scholar
  61. 61.
    V. Navalpakkam, L. Jentzsch, R. Sayres, S. Ravi, A. Ahmed, A. Smola, Measurement and modeling of eye-mouse behavior in the presence of nonlinear page layouts, in Proceedings of the 22nd International Conference on World Wide Web, WWW’13, Republic and Canton of Geneva, Switzerland (International World Wide Web Conferences Steering Committee, 2013), pp. 953–964Google Scholar
  62. 62.
    A.R. Nikolaev, C. Nakatani, G. Plomp, P. Jurica, C. van Leeuwen, Eye fixation-related potentials in free viewing identify encoding failures in change detection. Neuroimage 56, 1598–1607 (2011)CrossRefGoogle Scholar
  63. 63.
    P. Nunez, R. Srinivasan, Electric Fields of the Brain (Oxford University Press, New York, NY, USA, 2006)CrossRefGoogle Scholar
  64. 64.
    H. Obendorf, H. Weinreich, E. Herder, M. Mayer, Web page revisitation revisited: implications of a long-term click-stream study of browser usage, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2007), pp. 597–606Google Scholar
  65. 65.
    T. Ohno, Eyeprint: support of document browsing with eye gaze trace, in Proceedings of the 6th International Conference on Multimodal Interfaces (ACM, 2004), pp. 16–23Google Scholar
  66. 66.
    J.L. Orquin, S. Mueller Loose, Attention and choice: a review on eye movements in decision making. Acta. Psychol. (Amst) 144(1), 190–206 (2013)Google Scholar
  67. 67.
    S.K. Pal, V. Talwar, P. Mitra, Web mining in soft computing framework: relevance, state of the art and future directions. IEEE Trans. Neural Netw. 13(5), 1163–1177 (2002)CrossRefGoogle Scholar
  68. 68.
    B. Pang, L. Lee, Opinion mining and sentiment analysis. Foundations and trends in information retrieval 2(1–2), 1–135 (2008)CrossRefGoogle Scholar
  69. 69.
    D. Parkhurst, K. Law, E. Niebur, Modeling the role of salience in the allocation of overt visual attention. Vis. Res. 42(1), 107–123 (2002)CrossRefGoogle Scholar
  70. 70.
    R. Peña-Ortiz, J. Sahuquillo, A. Pont, J.A. Gil, Dweb model: representing web 2.0 dynamism. Comput. Commun. 32(6), 1118–1128 (2009)CrossRefGoogle Scholar
  71. 71.
    M. Perkowitz, O. Etzioni, Towards adaptive web sites: conceptual framework and case study. Artif. intell. 118(1), 245–275 (2000)zbMATHCrossRefGoogle Scholar
  72. 72.
    T.W. Picton, S. Bentin, P. Berg, E. Donchin, S.A. Hillyard, R. Johnson, G.A. Miller, W. Ritter, D.S. Ruchkin, M.D. Rugg, M.J. Taylor, Guidelines for using human event-related potentials to study cognition: recording standards and publication criteria. Psychophysiology 37(2), 127–152 (2000)CrossRefGoogle Scholar
  73. 73.
    M.I. Posner, C.R. Snyder, B.J. Davidson, Attention and the detection of signals. J. Exp. Psychol. 109(2), 160–174 (1980)CrossRefGoogle Scholar
  74. 74.
    D. Quah. Digital Goods and the New Economy (LSE Economics Department, 2002)Google Scholar
  75. 75.
    A. Rajaraman, J.D. Ullman, Mining of Massive Datasets (Cambridge University Press, New York, NY, USA, 2011)CrossRefGoogle Scholar
  76. 76.
    P. Rama, T. Baccino, Eye fixationrelated potentials (EFRPs) during object identification. Vis. Neurosci. 27, 187–192 (2010)Google Scholar
  77. 77.
    K. Rayner, G.W. McConkie, S. Ehrlich, Eye movements and integrating information across fixations. J. Exp. Psychol. Hum. Percept. Perform. 4(4), 529–544 (1978)CrossRefGoogle Scholar
  78. 78.
    P.E. Román, J.D. Velásquez, Cognitive science forweb usage analysis, in Advanced Techniques in Web Intelligence-2 (Springer Berlin Heidelberg, 2013), pp. 35–73Google Scholar
  79. 79.
    P.E. Román, J.D. Velásquez, A web browsing cognitive model, in Knowledge Engineering, Machine Learning and Lattice Computing with Applications (Springer, Berlin Heidelberg, 2013), pp. 31–40Google Scholar
  80. 80.
    P.E. Román, J.D. Velásquez, A neurology-inspired model of web usage. Neurocomputing 131, 300–311 (2014)CrossRefGoogle Scholar
  81. 81.
    U. Rutishauser, C. Koch, Probabilistic modeling of eye movement data during conjunction search via feature-based attention. J. Vis. 7(6), 5 (2007)CrossRefGoogle Scholar
  82. 82.
    M. Shepherd, J.M. Findlay, R.J. Hockey, The relationship between eye movements and spatial attention. Q. J. Exp. Psychol. A 38(3), 475–491 (1986)CrossRefGoogle Scholar
  83. 83.
    M. Spaniol, D. Denev, A. Mazeika, G. Weikum, P. Senellart, Data quality in web archiving, in Proceedings of the 3rd Workshop on Information Credibility on the Web (ACM, 2009), pp. 19–26Google Scholar
  84. 84.
    J. Srivastava, R. Cooley, M. Deshpande, P.-N. Tan, Web usage mining: Discovery and applications of usage patterns from web data. ACM SIGKDD Explorations Newsletter 1(2), 12–23 (2000)CrossRefGoogle Scholar
  85. 85.
    G. Takács, I. Pilászy, B. Németh, D. Tikk, Major components of the gravity recommendation system. ACM SIGKDD Explor. Newsl. 9(2), 80–83 (2007)CrossRefGoogle Scholar
  86. 86.
    Y. Takeda, M. Sugai, A. Yagi, Eye fixation related potentials in a proof reading task. Int. J. Psychophysiol. 40, 181–186 (2001)CrossRefGoogle Scholar
  87. 87.
    Y.-H. Tao, T.-P. Hong, W.-Y. Lin, W.-Y. Chiu, A practical extension of web usage mining with intentional browsing data toward usage. Expert Syst. Appl. 36(2), 3937–3945 (2009)CrossRefGoogle Scholar
  88. 88.
    B.W. Tatler, Current understanding of eye guidance. Vis. Cogn. 17(6–7), 777–789 (2009)CrossRefGoogle Scholar
  89. 89.
    B.W. Tatler, M.M. Hayhoe, M.F. Land, D.H. Ballard, Eye guidance in natural vision: reinterpreting salience. J. Vis. 11(5), 5 (2011)CrossRefGoogle Scholar
  90. 90.
    A. Torralba, A. Oliva, M.S. Castelhano, J.M. Henderson, Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 113(4), 766–786 (2006)CrossRefGoogle Scholar
  91. 91.
    J.D. Velásquez, Web site keywords: a methodology for improving gradually the web site text content. Intell. Data Anal. 16(2), 327–348 (2012)Google Scholar
  92. 92.
    J.D. Velásquez, Combining eye-tracking technologies with web usage mining for identifying website keyobjects. Eng. Appl. Artif. Intell. 26(56), 1469–1478 (2013)CrossRefGoogle Scholar
  93. 93.
    J.D. Velásquez, Web mining and privacy concerns: some important legal issues to be consider before applying any data and information extraction technique in web-based environments. Expert Syst. Appl. 40(13), 5228–5239 (2013)CrossRefGoogle Scholar
  94. 94.
    J.D. Velásquez, L.E. Dujovne, G. L’Huillier, Extracting significant website key objects: a semantic web mining approach. Eng. Appl. Artif. Intell. 24(8), 1532–1541 (2011)CrossRefGoogle Scholar
  95. 95.
    J.D. Velásquez, V. Palade, Adaptive web sitesa knowledge extraction from web data approach, in Proceedings of the 2008 Conference on Adaptive Web Sites: A Knowledge Extraction from Web Data Approach (Ios Press, 2008), pp. 1–272Google Scholar
  96. 96.
    E.K. Vogel, S.J. Luck, The visual N1 component as an index of a discrimination process. Psychophysiology 37(2), 190–203 (2000)CrossRefGoogle Scholar
  97. 97.
    R.W. White, S.M. Drucker, Investigating behavioral variability in web search, in Proceedings of the 16th International Conference on World Wide Web (ACM, 2007), pp. 21–30Google Scholar
  98. 98.
    M. Wischnewski, A. Belardinelli, W. Schneider, J. Steil, Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention. Cogn. Comput. 2(4), 326–343 (2010)CrossRefGoogle Scholar
  99. 99.
    S.S. Won, J. Jin, J.I. Hong, Contextual web history: using visual and contextual cues to improve web browser history, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (ACM, 2009), pp. 1457–1466Google Scholar
  100. 100.
    S. Xu, H. Jiang, F. Lau. User-oriented document summarization through vision-based eye-tracking, in Proceedings of the 14th International Conference on Intelligent User Interfaces (ACM, 2009), pp. 7–16Google Scholar
  101. 101.
    A.L. Yarbus, Eye Movements and Vision (Plenum Press, New York, NY, USA, 1967)CrossRefGoogle Scholar
  102. 102.
    N. Zhong, Impending brain informatics research from web intelligence perspective. Int. J. Inf. Technol. Decis. Mak. 5(04), 713–727 (2006)CrossRefGoogle Scholar
  103. 103.
    Y. Zhou, H. Leung, P. Winoto, Mnav: a markov model-based web site navigability measure. IEEE Trans. Softw. Eng. 33(12), 869–890 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Pablo Loyola
    • 1
  • Enzo Brunetti
    • 2
  • Gustavo Martinez
    • 1
  • Juan D. Velásquez
    • 1
    Email author
  • Pedro Maldonado
    • 2
  1. 1.Web Intelligence Centre, Industrial Engineering DepartmentUniversity of ChileSantiagoChile
  2. 2.Neurosystems Laboratory, Institute of Biomedical SciencesFaculty of Medicine, University of ChileSantiagoChile

Personalised recommendations